

B. Tech

Curriculum (2024) and Syllabus - Semester I & II

Computer Science Engineering

Branch Code: CSE

(SHR/AC/Auto/ Acad. Council /B.Tech/3/Syll./CSE/S1-S2/R1)

EDUCATION IS DEDICATION

Recommended by BoS on 30/08/2024 Approved by Academic Council on 31/08/2024

Amendments Recommended by BOS on 11/06/2025 Amendments Approved by Academic Council on 05/07/2025

	FIRST SEMESTER (July-December)											
	10 Days Compulsory Induction Program											
Sl. No:	Slot	Course Code	Course Type	Course Title (Course Name)		Credit Total Structure Marks					Credits	Hrs./ Week
			Турс		L	Τ	Р	R	CIA	ESE		
1	А	24MAT111	BSC	Calculus & Linear Programming	3	0	0	0	40	60	3	3
2	В	24PHC112	BSC- CLT	Physics for Information Science					50	4	5	
3	С	24EST003	ESC	Engineering Graphics 3 0 0 0 40 60				3	3			
4	D	24EST104R1	ESC	Foundations of Computing	Foundations of Computing 3 0 0 0 40 60					60	3	4
5	F	24ESR105	ESC- PBL	Algorithmic Thinking with Python-PBL-1	2	0	2	1	50	50	4	5
6	I*	24HUT006	НМС	Professional Ethics and Sustainable Development	1	0	2	0	100		2	3
7	L	24ESL007	ESC	Computer Aided Drawing (CAD) & Manufacturing002050Workshop00000000000				1	2			
8	J*	24SEK10N	SEC	Skill Enhancement Course 2	L						1	
	Total										21	25

	SECOND SEMESTER (January-June)											
Sl. No:	Slot	Course Code	Course Type	Course Title (Course Name)		Cre ruc	tu	re	Ma		Credits	Hrs./ Week
					L	Τ	Р	R				
1	Α	24MAT211	BSC	Linear Algebra	3	0	0	0	40	60	3	3
2	В	24CYC012	BSC- CLT	Engineering Chemistry	3	0	2	0	50	50	4	5
3	С	24EST023	ESC	Fundamentals of Electrical & Electronics Engineering	4	0	0	0	40	60	4	4
4	D	24ESC204	ESC	Programming in C	3	0	2	0	40	60	4	5
5	D	24CSR205	PCC- PBL	Digital System Design	3	0	0	1	50	50	4	4
6	L	24ESL006	ESC	Basic Electrical and Electronics Engineering Workshop	0	0	2	0	50		1	2
7	I*	24HUT107	HMC	Communicative English	0	0	2	0	50	50	1	2
8	8 J* 24SEK10N SEC Skill Enhancement Course 2							1				
	Total 22 25											

*No Grade Points will be awarded for the MOOC, I and J slot courses The self-learning (S) hours for each course is calculated based on the formulae, S= (L*1+P*1+[R/2])

24M/	AT111	CAL(LINE		AND				L	Τ	Р	R	C	Year o Introd	
			GRAM	MING				3	0	0	0	3	20	24
Prea	mble:									1			1	
									-				f Calculı	
Linear	· Progr	ammii	ng. Toj	oics lik	e Mul	tivariał	ole Ca	alcu	lus a	and	app	licat	ions, Si	mplex
		-	-	—	-								ırse hel	-
			-	-		_					-		uous ch	_
of variables or parameters with the help of modern tools and has applications across												cross		
all eng	all engineering domains.													
Prer	equisit	t e : Calo	culus of	f univar	iate fu	nction	5.							
					•								e able t	0
				ite rate			or fun	ctio	ns, r	ecog	nizi	ng th	neir	
	-			us cont			1 .	· · 1 · 1	1	1	1	1		- 11
				plots. [/			al va	riab	ies, i	nciu	aing	gthe	ir graph	s, ievei
							ction	al da	eriva	tive	and	lora	dient. [A	nnlvl
	-			-	-	1						-		
		-		od and ns and				-	luitip	mer	s in	nanc	lling	
			1		-	PO MA								
CO	P01	P02	PO3	P04	P05	P06	P07	Р	08	PO	9 1	P01) P011	P012
CO 1	3	3	2	3	2	-								
CO 2	3	3	2	3	2		1							
	_													
CO 3	3	3		EDU	2	NETS D	DIC	A.010)N					
CO 4	3	3	2	2										
			1		Assess	sment	Patte	rn						
Bloor	n's Cat	egory		Contin	uous A	lssessi	nent	Τοο	ols				Semes Iminati	
			Те	est1	Т	'est 2	0)the	er to	ols				
Reme	mber				1									
Under	stand													
Apply														
Analyse														
Evaluate														
Create														
create	9													

		N	lark Distri	but	tion of CIA					
Course					Theory [L]					
Structur e [L-T-P- R]		Attendance	Assignme	nt	Test-1	Tes	st-2	Total Marks		
3-0-0-0		5	10		12.5	12	2.5	40		
Total Mark distribution										
Total Ma	rks	CIA (I	Marks)		ESE (Mark	s)	ESI	E Duration		
100		2	40		60		2	.5 hours		
End Semester Examination [ESE]: Pattern										
PATTERN		PART A	N		PAR	RT B		ESE Marks		
PATTERN 1	estions (2 Que each module tion carries 3 ks: (3x8 =24 m),each marks	fro wh and ha sul can	uestions wil om each mod nich 1 questio swered. Each ve a maximu bdivisions. Each cries 9 marks arks: (9x4 = 3	ule, ou on show o quest m of 2 ach qu	t of uld be ion can estion	60			
			SYLL				,			
	MO	DULE I: (Sing	le variable	Ca	lculus and A	Applic	ations)			
(Text 1: Re	leva	nt topics fron	n sections 1	.1,	1.2,1.3,1.5,2	.2,2.3,	,2.4,2.6	,2.7)		
Limits of fu	nctio	n values, The l	imit laws, C	ont	tinuous funct	ions, F	Rates of	change,		
Second- and	l higł	ner-order deri	vatives, Inst	ant	taneous rates	s of cha	ange, De	erivative as a		
function, Ch	ain r	ule and Implic	tit differenti	atio	on.					
		DULE II: (Mu					ations)			
Functions o variables, L variables, P	f seve imits artial rrema	nt topics from eral variables, for functions derivatives o by Second derive	Graphs, Lev of two varia f functions, vative Test f	vel o ble Sec or l	curves and co es, Continuity cond-order pa ocal Extreme	ontour for fui artial d e Value	nctions lerivativ es.	of two ves and		
(Tavt 1. Da		DULE III: (Mu				чрыс	auoiisj			
(Text 1: Relevant topics from sections 13.5,13.6) The Chain Rule for partial derivatives, Directional Derivatives in the plane, Interpretation of the Directional Derivative, Properties of Directional Derivative, Gradient and its properties.										
	M	DDULE IV: (Li	near Progr	am	ming and O	ptimiz	zation)			
(Text 2: Re Constrained	leva leva l Max	nt topics fron nt topics fron tima and minin lex Method.	n section 13 n sections 3	3.9] 8.1,) 3.2,3.3,3.4,4	.1,4.2,	,4.3,4.4			

1. H. Anton, I. Biven, S. Davis, "Calculus", Wiley, 10th edition, 2015. 2. Hillier/Lieberman, "Introduction to Operation Research", McGraw Hill, 7th edition, 2019 Reference books 1. A textbook of Engineering Mathematics (8th Edition)- N.P.Bali, Dr. Manish Goyal (Lakshmi Publications India Ld.), 2019 2. Higher Engineering Mathematics - H.K.Dass, Er. Rajnish Verma (S. Chand & Company Pvt.Limited), 2014 3. Operation Research (4th Edition) - S.Kalavathy (Vikas Publications House Pvt.Ltd.), 2013 4. Operation Research - Ravindran, Philips, Solberg (Wiley India Pvt. Ltd.), 2007 5. Peter V. O'Neil, Advanced Engineering Mathematics, Indian edition 6. David C Lay.Linear Algebra and its applications, Pearson WPTEL/SWAYAM Courses for reference: 1. Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], https://nptel.ac.in/courses/111104125 (Relevant sections) 2. Prof. 6, Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/111106134 (Relevant sections) 1.1 Limits of function values, The limit laws, Continuous functions 2 1.2 Rates of change 1 1.3 Second- and higher-order derivatives 1 1.4 Instantaneous rates of change 1 1.5 Derivative as a function 2 2.1 Functions of several variables, Graphs 1 2.2 Level curves and contours of functions of two va	Text	books							
edition,2019 Reference books 1. A textbook of Engineering Mathematics (8th Edition) - N.P.Bali, Dr. Manish, Goyal (Lakshmi Publications India Ltd.),2019 2. Higher Engineering Mathematics - H.K.Dass, Er. Rajnish Verma (S. Chand & Company Pvt.Limited),2014 3. Operation Research (4th Edition) - S.Kalavathy (Vikas Publications House Pvt.Ltd.),2007 3. Operation Research (4th Edition) - S.Kalavathy (Vikas Publications House Pvt.Ltd.),2007 5. Peter V.O'Neil,Advanced Engineering Mathematics, Indian editor 6. David C Lay.Linear Algebra and its applications, Pearson	1.								
Reference books 1. A textbook of Engineering Mathematics (8th Edition)- N.P.Bali, Dr. Manish Goyal (Lakshmi Publications India Ltd.) 2019 2. Higher Engineering Mathematics - H.K.Dass, Er. Rajnish Verma (S. Chand & Company Pvt.Limited) 2014 3. Operation Research (4th Edition) - S.Kalavathy (Vikas Publications House Pvt.Ltd.) 2013 4. Operation Research - Ravindran, Philips, Solberg (Wiley India Pvt. Ltd.) , 2007 5. Peter V. O'Neil, Advanced Engineering Mathematics , Indian edition 6. David C Lay.Linear Algebra and its applications, Pearson NPTEL/SWAYAM Courses for reference: 1. Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], https://nptel.ac.in/courses/112106134 (Relevant sections) NOTE COURSE CONTENTS AND LECTURE SCHEDULE No. COURSE CONTENTS AND LECTURE SCHEDULE No. COURSE CONTENTS AND LECTURE SCHEDULE No. COURSE CONTENTS AND LECTURE SCHEDULE 1.1 Limits of function values, The limit laws, Continuous functions 1.1 1.1 1.1 A tortain rule and Implicit differentiation. 2 1.1 1.1 1.1 1.1 1.1 1.1	2.	Hillier/Lieberman, "Introduction to Operation Research", McGra	aw Hill,7th						
1. A textbook of Engineering Mathematics (8th Edition) - N.P.Bali, Dr. Manish Goyal (Lakshmi Publications India Ltd.),2019 2. Higher Engineering Mathematics - H.K.Dass, Er. Rajnish Verma (S. Chand & Company Pvt.Limited),2014 3. Operation Research (4th Edition) - S.Kalavathy (Vikas Publications House Pvt.Ltd.),2013 4. Operation Research and the Edition of Schalavathy (Vikas Publications House Pvt.Ltd.),2007 5. Peter V.O'Neil,Advanced Engineering Mathematics, Indian edittom 6. David C Lay.Linear Algebra and its applications, Pearson NPTEL/SWAYAM Courses for reference: 1. Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], https://nptel.ac.in/courses/111104125 (Relevant sections) 2. Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections) 2. Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections) 1.1 Limits of function values, The limit laws, Continuous functions 2 1.2 Rates of change 1 1.3 Second- and higher-order derivatives 1 1.4 Instantaneous rates of change 1 1.5 Derivative as a function 2 2.1 Functions of several variables, Continuity for functions of two variables 2 2.2 Level curves and contours of functions of two variables 1 2.3 Limits for functi		edition,2019							
Goyal (Lakshmi Publications India Ltd.), 2019 Higher Engineering Mathematics - H.K.Dass, Er. Rajnish Verma (S. Chand & Company Pvt.Limited), 2014 Operation Research (4th Edition) - S.Kalavathy (Vikas Publications House Pvt.Ltd.), 2013 Operation Research (4th Edition) - S.Kalavathy (Vikas Publications House Pvt.Ltd.), 2013 Operation Research - Ravindran, Philips, Solberg (Wiley India Pvt. Ltd.), 2007 Peter V.O'Neil,Advanced Engineering Mathematics, Indian edition David C Lay.Linear Algebra and its applications, Pearson NPTEL/SWAYAM Courses for reference: 1. Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], https://nptel.ac.in/courses/111104125 (Relevant sections) Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections) No. COURSE CONTENTS AND LECTURE SCHEDULE No. of Hours [36 hours] 1.1 Limits of function values, The limit laws, Continuous functions 2 1.2 Rates of change 1 1.3 Second- and higher-order derivatives 1 1.4 Instantaneous rates of change 1 1.5 Derivative as a function 2 1.6 Chain rule and Implicit differentiation. 2 2.1.2 Evel curves and contours of functions of two variables 2									
 2. Higher Engineering Mathematics - H.K.Dass, Er. Rajnish Verma (S. Chand & Company Pvt.Limited) ,2014 3. Operation Research (4th Edition) - S.Kalavathy (Vikas Publications House Pvt.Ltd.) ,2013 4. Operation Research - Ravindran, Philips, Solberg (Wiley India Pvt. Ltd.) , 2007 5. Peter V. O'Neil,Advanced Engineering Mathematics ,Indian edition bavid C Lay.Linear Algebra and its applications, Pearson NPTEL/SWAYAM Courses for reference: T. Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], https://nptel.ac.in/courses/111104125 (Relevant sections) Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections) No. of Hours [36 hours] 1.1 Limits of function values, The limit laws, Continuous functions 2 Rates of change 1 1.3 Second- and higher-order derivatives 1 1.4 Instantaneous rates of Change 1 1.5 Derivative as a function 2 2.1 Functions of several variables, Graphs 1 2.2 Level curves and contours of functions of two variables 2 2.3 Limits for functions of two variables, Continuity for functions of two variables 2 2.4 Partial derivatives 1 2.5 Second-order partial derivative Test for local Extreme 2 2.6 Relative extrema, Second derivative Test for local Extreme 2 2.7 MODULE III [9 hours] 3.1 The Chain Rule for partial derivatives 3.2 Directional Derivatives in the plane, Interpretation of the 2 2.4 Porteit of the Directional Derivative 	1.								
& Company Pvt.Limited) ,2014 3. Operation Research (4th Edition) - S.Kalavathy (Vikas Publications House Pvt.Ltd.) , 2007 5. Peter V. O'Neil,Advanced Engineering Mathematics ,Indian edition 6. David C Lay.Linear Algebra and its applications, Pearson NPTEL/SWAYAM Courses for reference: 1. Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], https://nptel.ac.in/courses/111104125 (Relevant sections) 2. Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections) No. COURSE CONTENTS AND LECTURE SCHEDULE No. of Hours [36 hours] 1.1 Limits of function values, The limit laws, Continuous functions 2 1.2 Rates of change 1 1.3 Second- and higher-order derivatives 1 1.5 Derivative as a function COURTION IS OF COURTION 2 1.4 Instantaneous rates of change 1 1.5 Derivative as a function softwo variables 2 2.1 Functions of several variables, Graphs 1 2.2 Level curves and contours of functions of two variables 2 2.3 Limits for functions of two variables, Continuity for functions of two variables, of two variables	2								
3. Operation Research (4th Edition) - S.Kalavathy (Vikas Publications House Pvt.Ltd.), 2013 4. Operation Research - Ravindran, Philips, Solberg (Wiley India Pvt. Ltd.), 2007 5. Peter V. O'Neil, Advanced Engineering Mathematics, Indian edition 6. David C Lay, Linear Algebra and its applications, Pearson NPTEL/SWAYAM Courses for reference: 1. Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], https://nptel.ac.in/courses/111104125 (Relevant sections) 2. Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections) No. COURSE CONTENTS AND LECTURE SCHEDULE [36 hours] 1.1 Limits of function values, The limit laws, Continuous functions 2 1.2 Rates of change 1 1.3 Second- and higher-order derivatives 1 1.4 Instantaneous rates of change 1 1.5 Derivative as a function COMMENT COMPORTOR 2 2.1.6 Chain rule and Implicit differentiation. 2 2.2 Imits for functions of two variables, Graphs 1 2.3 Limits for functions of two variables, Continuity for functions of two variables 2 2.3 Level curves and contours of functions of two variables 1 2.4 Par	2.		S. Chanu						
House Pvt.Ltd.), 2013 4. Operation Research - Ravindran, Philips, Solberg (Wiley India Pvt. Ltd.), 2007 5. Peter V. O'Neil,Advanced Engineering Mathematics ,Indian edition 6. David C Lay.Linear Algebra and its applications, Pearson NPTEL/SWAYAM Courses for reference: 1. Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], https://nptel.ac.in/courses/111104125 (Relevant sections) 2. Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections) No. COURSE CONTENTS AND LECTURE SCHEDULE 13 Second- and higher-order derivatives 14 Initis of function values, The limit laws, Continuous functions 2 1.2 Rates of change 1 1.3 Second- and higher-order derivatives 1 1.4 Instantaneous rates of change 1 1.5 Derivative as a function 2 2.1.6 Chain rule and Implicit differentiation. 2 2.2 Limits for functions of two variables, Continuity for functions of two variables 2 2.3 Limits for functions of two variables, Continuity for functions of two variables 1 2.4 Partial derivatives of functions 2 2.5 Seco	3.								
5. Peter V. O'Neil, Advanced Engineering Mathematics , Indian edition 6. David C Lay. Linear Algebra and its applications, Pearson NPTEL/SWAYAM Courses for reference: 1. Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], https://nptel.ac.in/courses/11104125 (Relevant sections) 2. Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections) No. COURSE CONTENTS AND LECTURE SCHEDULE 11 Limits of function values, The limit laws, Continuous functions 2 12 Rates of change 1 1.3 Second- and higher-order derivatives 1 1.4 Instantaneous rates of change 1 1.5 Derivative as a function 2 2.6 Chain rule and Implicit differentiation. 2 2.1 Functions of several variables, Graphs 1 2.2 Level curves and contours of functions of two variables 2 2.3 Limits for functions of two variables, Continuity for functions of two variables 1 2.4 Partial derivatives of functions 2 2.5 Second- order partial derivative 1 2.6 Relative extrema, Second derivative Test for local Extreme Values. <									
6. David C Lay.Linear Algebra and its applications, Pearson NPTEL/SWAYAM Courses for reference: 1. Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], https://nptel.ac.in/courses/111104125 (Relevant sections) 2. Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections) No. COURSE CONTENTS AND LECTURE SCHEDULE No. of Hours [36 hours] 11. Limits of function values, The limit laws, Continuous functions 2 12. Rates of change 1 13. Second- and higher-order derivatives 1 14. Instantaneous rates of change 1 15. Derivative as a function 2 16. Chain rule and Implicit differentiation. 2 21. Functions of several variables, Graphs 1 22. Level curves and contours of functions of two variables 2 23. Limits for functions of two variables, Continuity for functions of two variables 1 24. Partial derivatives of functions 2 25. Second- and higher-order ferivative Test for local Extreme Values. 2 25. Second-order partial derivatives 1 26. Re	4.	Operation Research - Ravindran, Philips, Solberg (Wiley India P	vt. Ltd.) , 2007						
NPTEL/SWAYAM Courses for reference: 1. Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], https://nptel.ac.in/courses/111104125 (Relevant sections) 2. Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections) No. COURSE CONTENTS AND LECTURE SCHEDULE No. of Hours [36 hours] 11 Limits of function values, The limit laws, Continuous functions 2 1.2 Rates of change 1 1.3 Second- and higher-order derivatives 1 1.4 Instantaneous rates of change 1 1.5 Derivative as a function 2 1.6 Chain rule and Implicit differentiation. 2 2.1 Functions of several variables, Graphs 1 2.1 Functions of several variables, Graphs 1 2.2 Level curves and contours of functions of two variables 2 2.3 Limits for functions of two variables, Continuity for functions of two variables 1 2.4 Partial derivatives of functions 2 2.5 Second-order partial derivative Test for local Extreme Values. 2 3.1 The Chain Rule for partial derivatives 3 3.2 </td <td>5.</td> <td>Peter V .O'Neil,Advanced Engineering Mathematics ,Indian editi</td> <td>on</td>	5.	Peter V .O'Neil,Advanced Engineering Mathematics ,Indian editi	on						
1.Dr. Joydeep Dutta, Calculus of Several Real Variables, IIT Kanpur, [NPTEL], <u>https://nptel.ac.in/courses/111104125</u> (Relevant sections)2.Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections)No.COURSE CONTENTS AND LECTURE SCHEDULENo. of Hours [36 hours]No.COURSE CONTENTS AND LECTURE SCHEDULENo. of Hours [36 hours]11Limits of function values, The limit laws, Continuous functions212Rates of change113Second- and higher-order derivatives114Instantaneous rates of change115Derivative as a function216Chain rule and Implicit differentiation.221Functions of several variables, Graphs122Level curves and contours of functions of two variables223Limits for functions of two variables, Continuity for functions of two variables124Partial derivatives of functions225Second-order partial derivative226Relative extrema, Second derivative Test for local Extreme Values.231The Chain Rule for partial derivatives332Directional Derivative in the plane, Interpretation of the Directional Derivative3	6.	David C Lay.Linear Algebra and its applications, Pearson							
[NPTEL], https://nptel.ac.in/courses/111104125 (Relevant sections)2.Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections)No.COURSE CONTENTS AND LECTURE SCHEDULENo. of Hours [36 hours]11Limits of function values, The limit laws, Continuous functions212.Rates of change113Second- and higher-order derivatives114Instantaneous rates of change115Derivative as a function0200000000000000000000000000000000000									
2.Prof. G. Sreenivasan, Linear Programming, IIT Madras, NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections)No.COURSE CONTENTS AND LECTURE SCHEDULENo. of Hours (36 hours)11Limits of function values, The limit laws, Continuous functions21.2Rates of change11.3Second- and higher-order derivatives11.4Instantaneous rates of change11.5Derivative as a function2MODULE II [9 hours]2.1Functions of several variables, Graphs12.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions of two variables22.5Second-order partial derivative12.6Relative extrema, Second derivative Test for local Extreme values.23.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative2	1.								
NPTEL, https://nptel.ac.in/courses/112106134 (Relevant sections)No.COURSE CONTENTS AND LECTURE SCHEDULENo. of Hours [36 hours]1Limits of function values, The limit laws, Continuous functions21.1Limits of function values, The limit laws, Continuous functions21.2Rates of change11.3Second- and higher-order derivatives11.4Instantaneous rates of change11.5Derivative as a function21.6Chain rule and Implicit differentiation.22.1Functions of several variables, Graphs12.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions12.5Second-order partial derivative12.6Relative extrema, Second derivative Test for local Extreme Values.23.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative2	2		tions)						
No.No. of Hours [36 hours]No. of Hours (36 hours]No. of Hours (36 hours]1.1Limits of function values, The limit laws, Continuous functions1.2Rates of change1.3Second- and higher-order derivatives1.4Instantaneous rates of change1.5Derivative as a function2.6Chain rule and Implicit differentiation.2.7MODULE II [9 hours]2.1Functions of several variables, Graphs112.2Level curves and contours of functions of two variables222.3Limits for functions of two variables, Continuity for functions of two variables12.42.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.3.1The Chain Rule for partial derivatives3.2Directional Derivatives in the plane, Interpretation of the Directional Derivative3.3Properties of the Directional Derivative	۷.								
No.COURSE CONTENTS AND LECTURE SCHEDULE[36 hours]III COURSE CONTENTS AND LECTURE SCHEDULEIII COURSE CONTENTS AND LECTURE SCHEDULEIIII Limits of function values, The limit laws, Continuous functions1.1Limits of function values, The limit laws, Continuous functions21.2Rates of change11.3Second- and higher-order derivatives11.4Instantaneous rates of change11.5Derivative as a function COURT COURT OF DEDICATION21.6Chain rule and Implicit differentiation.2MODULE II [9 hours]2.1Functions of several variables, Graphs12.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions22.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.2MODULE III [9 hours]3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2		NPTEL, https://hptel.ac.in/courses/112106134 (Relevant secu	,						
MODULE 1 [9 hours]1.1Limits of function values, The limit laws, Continuous functions21.2Rates of change11.3Second- and higher-order derivatives11.4Instantaneous rates of change11.5Derivative as a function21.6Chain rule and Implicit differentiation.22.1Functions of several variables, Graphs12.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions22.5Second-order partial derivative12.6Relative extrema, Second derivative Test for local Extreme Values.2MODULE III [9 hours]3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative2	No.								
1.1Limits of function values, The limit laws, Continuous functions21.2Rates of change11.3Second- and higher-order derivatives11.4Instantaneous rates of change11.5Derivative as a function21.6Chain rule and Implicit differentiation.2MODULE II [9 hours]2.1Functions of several variables, Graphs12.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions12.5Second-order partial derivative12.6Relative extrema, Second derivative Test for local Extreme Values.2MODULE III [9 hours]3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2									
1.2Rates of change11.3Second- and higher-order derivatives11.4Instantaneous rates of change11.5Derivative as a function21.6Chain rule and Implicit differentiation.21.6Chain rule and Implicit differentiation.22.1Functions of several variables, Graphs12.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions12.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.23.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2			2						
1.3Second- and higher-order derivatives11.4Instantaneous rates of change11.5Derivative as a function21.6Chain rule and Implicit differentiation.22.1Functions of several variables, Graphs12.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions12.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.23.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2									
1.4Instantaneous rates of change11.5Derivative as a function21.6Chain rule and Implicit differentiation.2MODULE II [9 hours]2.1Functions of several variables, Graphs12.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions12.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.23.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2									
1.5Derivative as a functionEDECATION IS DEDICATION21.6Chain rule and Implicit differentiation.2MODULE II [9 hours]2.1Functions of several variables, Graphs12.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions12.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.2MODULE III [9 hours]3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2									
1.6Chain rule and Implicit differentiation.21.6Chain rule and Implicit differentiation.2MODULE II [9 hours]2.1Functions of several variables, Graphs12.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions22.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.23.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2	-								
MODULE II [9 hours]2.1Functions of several variables, Graphs12.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions22.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.23.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2									
2.1Functions of several variables, Graphs12.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions22.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.23.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2	1.6		2						
2.2Level curves and contours of functions of two variables22.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions22.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.2MODULE III [9 hours]3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2			1						
2.3Limits for functions of two variables, Continuity for functions of two variables12.4Partial derivatives of functions22.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.2MODULE III [9 hours]3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2	-		1						
of two variables12.4Partial derivatives of functions22.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.2MODULE III [9 hours]3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2			2						
2.4Partial derivatives of functions22.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.2MODULE III [9 hours]3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2	2.3		1						
2.5Second-order partial derivatives12.6Relative extrema, Second derivative Test for local Extreme Values.2MODULE III [9 hours]3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2	2.4								
2.6Relative extrema, Second derivative Test for local Extreme Values.2MODULE III [9 hours]3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2									
Values.MODULE III [9 hours]3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2	-	· · · · · · · · · · · · · · · · · · ·							
MODULE III [9 hours]3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2	2.6		Z						
3.1The Chain Rule for partial derivatives33.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2									
3.2Directional Derivatives in the plane, Interpretation of the Directional Derivative23.3Properties of the Directional Derivative2	3.1								
Directional Derivative3.3Properties of the Directional Derivative2									
l l l l l l l l l l l l l l l l l l l									
3.4Gradient and its properties.2	3.3	Properties of the Directional Derivative 2							
	3.4								

4.1Constrained maxima and minima4.2The Method of Lagrange Multipliers4.3LPP- Formation4.4Simplex MethodCO Assessment Questions1.Use implicit differentiation to find dx for the Folium of Descartes dx $x^3+y^3=3xy$ a spherical balloon is being inflated. Find a general formula for the instantaneous rate of change of the volume V with respect to the r, given that $V = \frac{1}{\sqrt{\pi}} r^3$ 3.Use the implicit plotting capability of a CAS(MATLAB/SCILAB) to the curve C whose equation is $x^3 - 2xy + y^3 = 0$.1.An international airline has a regulation that each passenger crasuitcase having the sum of its width, length, and height less than of 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation.2.Find three positive numbers whose sum is 48 and such that the is as large as possible.3.Use a CAS to generate a contour plot of $f(x, y) = 2y^2x - yx^2 + 4x^2 - 5 \le x \le 5$ and $-5 \le y \le 5$, and use the plot to approximate the lo all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative minima.1.A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x^2 - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase.2.Let $f(x, y) = x^2e^y$. Find the maximum value of a directional deriva $(-2, 0)$, and find the unit vector in the direction in which the maxim occurs.3.The accompanying figure shows some lavel, curves of an upper some lavel.		MODULE IV [9 hours]								
4.3LPP- Formation4.4Simplex MethodCO Assessment QuestionsCO Assessment Questions1. Use implicit differentiation to find $\frac{dy}{dx}$ for the Folium of Descartes $\frac{x^3+y^3=3}{3}xy$ 2 A spherical balloon is being inflated. Find a general formula for the instantaneous rate of change of the volume V with respect to the r, given that $V = \frac{1}{2}\pi r^3$ 3. Use the implicit plotting capability of a CAS(MATLAB/SCILAB) to the curve C whose equation is $x^3 - 2xy + y^3 = 0$.1. An international airline has a regulation that each passenger casuitcase having the sum of its width, length, and height less than a 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation.CO2Sind three positive numbers whose sum is 48 and such that the is as large as possible.3. Use a CAS to generate a contour plot of $f(x, y) = 2y^2x - yx^2 + 4x^2 - 5 \le x \le 5$ and $-5 \le y \le 5$, and use the plot to approximate the lo all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative m minima.1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x^2 - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase.Let f (x, y) = x ² ey. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs.3 The accompanying figure shows some level curves of an u	1		Const	4.1						
4.3 LPP- Formation 4.4 Simplex Method CO Assessment Questions CO Assessment Questions 1. Use implicit differentiation to find ^d x for the Folium of Descartes dx x ³ +y ³ = 3 xy 2. A spherical balloon is being inflated. Find a general formula for the instantaneous rate of change of the volume V with respect to the r, given that V= ¹ / ₄ r r ³ 3. Use the implicit plotting capability of a CAS(MATLAB/SCILAB) to the curve C whose equation is x ³ - 2xy + y ³ = 0. 1. An international airline has a regulation that each passenger casuitcase having the sum of its width, length, and height less than on 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation. CO2 1. An international airline has a regulation that each passenger can suitcase having the sum of its width, length, and height less than on 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation. CO2 8. Use a CAS to generate a contour plot of f(x, y) = 2y ² x - yx ² + 4x; -5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the lo all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative m minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x ² - 2y equation for the traject	2	2 The Method of Lagrange Multipliers	The N	4.2						
 CO Assessment Questions Use implicit differentiation to find ^{dx} for the Folium of Descartes dx x³+y³= 3 xy A spherical balloon is being inflated. Find a general formula for the instantaneous rate of change of the volume V with respect to the r, given that V = ¹/₂π r³/₃ Use the implicit plotting capability of a CAS(MATLAB/SCILAB) to the curve C whose equation is x³ - 2xy + y³ = 0. An international airline has a regulation that each passenger casuitcase having the sum of its width, length, and height less than of 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation. Find three positive numbers whose sum is 48 and such that the is as large as possible. Use a CAS to generate a contour plot of f (x, y) = 2y²x - yx² + 4x²/₂ -5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the lo all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative m minima. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 	2									
 1. Use implicit differentiation to find ⁴x for the Folium of Descartes ⁴x³+y³= 3 xy A spherical balloon is being inflated. Find a general formula for the instantaneous rate of change of the volume V with respect to the r, given that V = ¹x r³ 3 3. Use the implicit plotting capability of a CAS(MATLAB/SCILAB) to the curve C whose equation is x³ - 2xy + y³ = 0. 1. An international airline has a regulation that each passenger carsuitcase having the sum of its width, length, and height less than of 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation. 2. Find three positive numbers whose sum is 48 and such that the is as large as possible. 3. Use a CAS to generate a contour plot of f(x, y) = 2y²x - yx² + 4x² - 5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the lo all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative m minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 	4.4 Simplex Method 4									
 dx x³+y³= 3 xy A spherical balloon is being inflated. Find a general formula for the instantaneous rate of change of the volume V with respect to the r, given that V = ¹/₄π r³ 3 Use the implicit plotting capability of a CAS(MATLAB/SCILAB) to the curve C whose equation is x³ - 2xy + y³ = 0. An international airline has a regulation that each passenger casuitcase having the sum of its width, length, and height less than of 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation. Find three positive numbers whose sum is 48 and such that the is as large as possible. Use a CAS to generate a contour plot of f(x, y) = 2y²x - yx² + 4x² - 5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the loal relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative minima. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 		CO Assessment Questions								
 x³+y³= 3 xy A spherical balloon is being inflated. Find a general formula for the instantaneous rate of change of the volume V with respect to the r, given that V= 1_⊥π r³. Use the implicit plotting capability of a CAS(MATLAB/SCILAB) to the curve C whose equation is x³ - 2xy + y³ = 0. An international airline has a regulation that each passenger cassuitcase having the sum of its width, length, and height less than on 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation. Find three positive numbers whose sum is 48 and such that the is as large as possible. Use a CAS to generate a contour plot of f(x, y) = 2y²x - yx² + 4x²y - 5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the loal I relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative minima. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. Let f (x, y) = x²e^y. Find the maximum value of a directional derivat (-2, 0), and find the unit vector in the direction in which the maxim occurs. 	tes	-	1							
 CO1 ² A spherical balloon is being inflated. Find a general formula for the instantaneous rate of change of the volume V with respect to the r, given that V = ¹/_x r³/₃ 3. Use the implicit plotting capability of a CAS(MATLAB/SCILAB) to the curve C whose equation is x³ - 2xy + y³ = 0. 1. An international airline has a regulation that each passenger casuitcase having the sum of its width, length, and height less than of 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation. 2. Find three positive numbers whose sum is 48 and such that the is as large as possible. 3. Use a CAS to generate a contour plot of f(x, y) = 2y²x - yx² + 4x³ - 5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the lo all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative m minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 3. The accompanying figure shows some level curves of an u 										
 r, given that V = ¹/_x r³ 3 Use the implicit plotting capability of a CAS(MATLAB/SCILAB) to the curve C whose equation is x³ - 2xy + y³ = 0. 1. An international airline has a regulation that each passenger ca suitcase having the sum of its width, length, and height less than of 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation. 2. Find three positive numbers whose sum is 48 and such that the is as large as possible. 3. Use a CAS to generate a contour plot of f(x, y) = 2y²x - yx² + 4x² - 5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the lo all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative m minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 3. The accompanying figure shows some level curves of an u 		 A spherical balloon is being inflated. Find a general formula for instantaneous rate of change of the volume V with respect to the volume V with res								
 the curve C whose equation is x³ - 2xy + y³ = 0. 1. An international airline has a regulation that each passenger ca suitcase having the sum of its width, length, and height less than of 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation. 2. Find three positive numbers whose sum is 48 and such that there is as large as possible. 3. Use a CAS to generate a contour plot of f(x, y) = 2y²x - yx² + 4x² -5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the loar all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maximo occurs. 										
 suitcase having the sum of its width, length, and height less than of 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation. 2. Find three positive numbers whose sum is 48 and such that the is as large as possible. 3. Use a CAS to generate a contour plot of f(x, y) = 2y²x - yx² + 4x² - 5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the lo all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 3. The accompanying figure shows some level curves of an upper some some level curves of an upper some level curves of an upper some some some level curves of an upper some some some some some some some some	3) to graph		3							
 suitcase having the sum of its width, length, and height less than of 129 cm. Find the dimensions of the suitcase of maximum volu passenger can carry under this regulation. 2. Find three positive numbers whose sum is 48 and such that the is as large as possible. 3. Use a CAS to generate a contour plot of f(x, y) = 2y²x - yx² + 4x² -5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the lo all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 	er can carry a	1. An international airline has a regulation that each pass	1							
 passenger can carry under this regulation. 2. Find three positive numbers whose sum is 48 and such that there is as large as possible. 3. Use a CAS to generate a contour plot of f(x, y) = 2y²x - yx² + 4x²y -5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the lot all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 3. The accompanying figure shows some level curves of an use the particle is a some level curves of an use the particle is a some level curves of an use the particle is provide the particle is provide the particle is provide the particle is particle in the particle is particle	-	-								
 CO2 2. Find three positive numbers whose sum is 48 and such that there is as large as possible. 3. Use a CAS to generate a contour plot of f(x, y) = 2y²x - yx² + 4x² -5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the log all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative m minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 3. The accompanying figure shows some level curves of an unit. 	volume that a	129 cm. Find the dimensions of the suitcase of maximu	129 cm. Find the dimensions of the suitcase of r							
 CO2 is as large as possible. 3. Use a CAS to generate a contour plot of f(x, y) = 2y²x - yx² + 4xy -5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the log all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative m minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 3. The accompanying figure shows some level curves of an upper source of a properties. 										
 3. Use a CAS to generate a contour plot of f(x, y) = 2y²x - yx² + 4xy -5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the lo all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative m minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 3. The accompanying figure shows some level curves of an unit. 	their product									
 -5 ≤ x ≤ 5 and -5 ≤ y ≤ 5, and use the plot to approximate the loall relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative m minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 3. The accompanying figure shows some level curves of an unit. 	Away for	is as large as possible.								
 all relative extrema and saddle points in the region. Check your a using calculus, and identify the relative extrema as relative m minima. 1. A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 3. The accompanying figure shows some level curves of an upper solution. 	-									
 using calculus, and identify the relative extrema as relative mminima. 1. A heat-seeking particle is located at the point (2, 3) on a flat mwhose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maximoccurs. 3. The accompanying figure shows some level curves of an unit of the source of the sour										
 A heat-seeking particle is located at the point (2, 3) on a flat m whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. The accompanying figure shows some level curves of an u 		FLUCTOR LICENT STORED CALLCON								
 whose temperature at a point (x, y) is T (x, y) = 10 - 8x² - 2y equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maxim occurs. 3. The accompanying figure shows some level curves of an upper solution. 		minima.								
 equation for the trajectory of the particle if it moves continuou direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maximoccurs. 3. The accompanying figure shows some level curves of an upper solution. 	_		1							
 direction of maximum temperature increase. 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maximoccurs. 3. The accompanying figure shows some level curves of an upper shows some level curves some some some some some some some so	-									
 2. Let f (x, y) = x²e^y. Find the maximum value of a directional deriva (-2, 0), and find the unit vector in the direction in which the maximoccurs. 3. The accompanying figure shows some level curves of an upper shows some level curves of an upper shows. 	luously in the									
 (-2, 0), and find the unit vector in the direction in which the maximoccurs. The accompanying figure shows some level curves of an upper shows some some shows some some some some some some some som		-								
occurs.			4							
3 The accompanying figure shows some level curves of an u	aximum value									
(03 - 1)	n unspecified	3 The accompanying figure shows some level curves								
function f(x, y). Of the gradients at P and Q, which probably has the length? Explain.		function f(x, y). Of the gradients at P and Q, which probab)3	CO3						

		e e
	4.	(a) Use a CAS to graph $f(x, y) = (x^2 + 3y^2) e^{-(x^2+y^2)}$.
		(b) At how many points do you think it is true that $D_u f(x, y) = 0$ for all
		unit vectors u?
		(c) Use a CAS to find ∇f
		(d) Use a CAS to solve the equation $\nabla f(x, y) = 0$ for x and y.
	1.	Work through the simplex method (in algebraic form) step by step
		to solve the following problem.
		Max Z = $3x_1 + 4x_2 + 5x_3$, subject to $3x_1 + x_2 + 5x_3 \le 150$, $x_1 + 4x_2 + x_3 \le 120$,
		$2x_1 + 4x_2 + 2x_3 \le 105$ and $x_1 \ge 0$, $x_2 \ge 0$, $x_3 \ge 0$.
	2.	Consider the following problem. Maximize $Z = 5x_1 + 4x_2$, subject to
4		$3x_1 + 2x_2 \le 6$, $2x_1 - x_2 \ge 6$ and $x_1 \ge 0$, $x_2 \ge 0$.
		(a) Demonstrate graphically that this problem has no feasible solutions.
		(b) Use a computer package based on the simplex method to
		determine that the problem has no feasible solutions.
		(c) Using the Big M method, work through the simplex method step by
		step to demonstrate that the problem has no feasible solutions.
L	1	Prepared by

Prepared by Swapna Joseph Asst Prof, ASH

24F	РНС112	PI	HYSICS	FOR I		I	· '	Т	Р	R	_	Year of Introduc	ction	
	-				SCIEN	CE	3	;	0	2	0	4	202	
Enab applie provi emplie semio scien core Prero Cour	Preamble: Enable the students to enhance their fundamental knowledge of physics and its applications relevant to Computer Science and Engineering. This syllabus is designed to provide a comprehensive understanding of key principles in modern physics, emphasising superconductivity, electrical conductivity, quantum mechanics, semiconductor physics, laser and electromagnetism. The program is designed to develop scientific attitudes and enable the students to correlate the concepts of Physics with the core programmes. Prerequisite: Basic knowledge in Physics and Mathematics. Course Outcomes: After the completion of the course, the student will be able to CO 1 Describe the principles of electrical conductivity, Fermi energy, energy bands and													
CO 2	superc Apply t atomic	the kno	wledge	e of bas	ic Quai	ntum Me	echani	cs t	o tł	ie b	ehav	viou	r of matte	er at
	CO 3 Apply the characteristics of intrinsic semiconductors in the derivation of electron and hole densities, intrinsic carrier concentration and formation of pn junctions. .[Apply]													
		-	-			constru of electr					-		ferent las y]	ers
	Apply l experii			ge of p		es and th	1		h ph	ysic	s to	con	duct	
	P01	P02	P03	PO4	CO - PO5	PO MAP PO6	PING PO7		08	п	09	DO	10 PO11	DO12
			PU3	PU4	P05	PUO	PU7	P	00	P	09	PU.		
CO 1	3	3												2
CO 2	3	3												2
CO 3	3	3												2
CO 4	3	3												2
CO 5	3	3			2						2			2
Assessment Pattern for Theory Component														
В	loom's	Catego	ory	Continuous Assessn				nent Tools Other tools				End Semester		
				Test1 Test 2						S Examination				
Reme	ember			\checkmark		\checkmark		\checkmark				,	\checkmark	

Understan	d		\checkmark	\checkmark		\checkmark		\checkmark	
Apply			\checkmark	\checkmark		\checkmark		\checkmark	
Analyse									
Evaluate									
Create									
		Ass	essment Patt	ern for	the Lab	Comp	one	nt	
	Bloo	m's Cate	egory		Conti	nuous	Ass	essmen	t Tools
				0	Classwoi	·k		Те	est1
Remember					\checkmark			\checkmark	
Understan	d				\checkmark			\checkmark	
Apply					\checkmark				
Analyse									
Evaluate									
Create					K				
			Mark D	istribu	tion of C	CIA			
6	• • •			Theo	ory [L]	Pra	ctic	al [P]	Total
Course Structur e [L-T-P- R]	Atte	ndance	Assignment	Test-1	Test-2	Lab wor k		Lab Exam	Marks
3-0-2-0		5	5	7.5	7.5	15		10	50
		•	Total M	larks di	stributi	on			
Total Ma	rks	CI	A (Marks)		ESE (Ma	rks)		ESE	Duration
100			50		50			2	2 hours
		1	d Semester E	xamina	-	-		n	
PATTE	RN		PART A			PART E			ESE Marks
2 Questions from each module, 8 questions, each Question carries 3 marks. Answer any 6				each 3 ques Each	estions w module, tion shou question	out of ald be a can ha	whi insv ave	ch 1 vered. a	50
Marks: (6x3 =18 marks)					mum of 2 question as: (4x 8	ı carrie	es 8		

SYLLABUS

MODULE I: Electrical conductivity and Superconductivity (9 hours)

Classical free electron theory, Electrical conductivity in metals, Fermi Dirac distribution, Variation of Fermi function with temperature, Fermi Energy, Energy bands, Classification of materials into conductor, semiconductor and insulator.

Superconductivity, Transition temperature, Critical field, Meissner effect, Type I and Type II Superconductors, BCS Theory, Applications of Superconductors

MODULE II: Quantum Mechanics (9 hours)

Introduction to Quantum Mechanics, Wave nature of particle, Uncertainty principle, Applications-Absence of electron inside the nucleus- Natural line broadening, Wave function- properties - physical interpretation, Formulation of time-dependent and timeindependent Schrodinger equations, Particle in a one- dimensional box - Derivation of energy eigenvalues and normalised wave function, Quantum Mechanical Tunnelling (Qualitative), Quantum Computing (Qualitative)

MODULE III: Semiconductor Physics (9 hours)

Intrinsic Semiconductor, Derivation of the density of electron in the conduction band and density of holes in the valence band, Intrinsic carrier concentration, Variation of intrinsic carrier concentration with temperature, Extrinsic semiconductor(qualitative), Formation of pn junction, Fermi level in semiconductors-intrinsic and extrinsic, Energy band diagram of pn junction - Qualitative description of charge flow across a pn junction - Forward and reverse bias pn junctions, Diode equation (Derivation), I-V Characteristics of pn junction, Solar cells- IV Characteristics, Efficiency

MODULE IV : Laser and Electromagnetic Theory (9 hours)

Properties of laser, Absorption, Spontaneous emission and stimulated emission, Principle of laser - conditions for sustained lasing – Population inversion, Pumping, Metastable states, Basic components of laser - Active medium, Energy source, Optical resonant cavity, Construction and working of Ruby laser, Construction and working of Semiconductor laser (qualitative), Applications of laser.

Magnetic field and Magnetic flux density, Gauss's law for Magnetic flux density, Ampere's Circuital law, Faraday's law, Classification of magnetic materials -Para, Dia and Ferromagnetic materials, Gauss divergence theorem & Stokes' theorem, Equation of continuity, Derivation of Maxwell's Equations

Text books

- 1. M.N. Avadhanulu, P.G. Kshirsagar, TVS Arun Murthy "A Textbook of Engineering Physics", S.Chand &Co., Revised edition 2019.
- 2. H.K.Malik , A.K. Singh, "Engineering Physics" McGraw Hill Education, Second Edition 2017.
- 4. Md.N.Khan & S.Panigrahi "Principles of Engineering Physics 1& 2", Cambridge University Press, 2016.
- 5. Aruldhas G., "Engineering Physics", PHI Pvt. Ltd., 6th Edition 2015.
- 6. B Premlet ., "Advanced Engineering Physics", Phasor Books,11th edition ,2021.
- 7. I .Dominic and. A. Nahari, "A TextBook of Engineering Physics", Owl Books Publishers, Revised edition, 2016.

	Computer Science and Eng	gineering (CSE							
	ung and R.A Freedman, "University Physics with Modern Physic	s" 2020,							
	dition, Pearson, USA.								
	 B Premlet ,"Introduction to solid state devices", Phasor Books. Griffiths "Introduction to Electrodynamics" 4th Edition, Pearson. 								
10. Griffith	s "Introduction to Electrodynamics" 4th Edition, Pearson.								
	FEL/SWAYAM Courses for reference:								
Module I -	A brief course on Superconductivity								
Madala II	https://nptel.ac.in/courses/115103108								
Module II ·	Quantum Mechanics and Applications <u>https://nptel.ac.in/courses/115102023</u>								
	Quantum Mechanics I								
	https://nptel.ac.in/courses/115101107								
Module III	- Semiconductor Optoelectronics								
	https://nptel.ac.in/courses/115102103								
	Semiconductor Optoelectronics								
Modulo IV	<u>https://nptel.ac.in/courses/115102026</u> - Introduction to LASER								
	https://nptel.ac.in/courses/115102124								
	Laser: Fundamentals and Applications								
	https://nptel.ac.in/courses/104104085								
	Electromagnetism								
	https://nptel.ac.in/courses/115106122								
		No. of Hours							
No.	COURSE CONTENTS AND LECTURE SCHEDULE	[36]							
	DDULE 1: Electrical conductivity and Superconductivity (9 h	-							
1.1	Classical free electron theory	1							
1.2	Electrical conductivity in metals	1							
1.3	Fermi Dirac distribution	1							
1.4	Variation of Fermi function with temperature, Fermi Energy	1							
1.5	Energy bands, Classification of materials into conductor,	1							
	semiconductor and insulator.								
1.6	Super conductivity, Transition temperature	1							
1.7	Critical field, Meissner effect	1							
1.8	Type I and Type II Superconductors	1							
1.9	BCS Theory, Applications of Superconductors	1							
	MODULE II: Quantum Mechanics (9 hours)								
	Introduction to Quantum Mechanics , Wave nature of								
2.1	particles	1							
2.2	Uncertainty principle , Applications-Absence of electron inside the nucleus	1							
2.2									
2.2	Natural line broadening	1							
		1 1							
2.3	Natural line broadening								

components of laser - Activ al resonant cavity, Construction and working of Sen tative), Applications of lase etic field and Magnetic flux	re medium, Energy source, etion and working of Ruby niconductor laser er density nsity, Ampere's Circuital law, als-Para, Dia and kes' theorem, Equation of	1 1 1 1 1 1 1 1		
components of laser - Activ al resonant cavity, Construct ruction and working of Sem tative), Applications of lase etic field and Magnetic flux 's law for Magnetic flux der ay's law fication of magnetic materi magnetic materials divergence theorem & Stol uity. ation of Maxwell's Equation	re medium, Energy source, etion and working of Ruby niconductor laser er density nsity, Ampere's Circuital law, als-Para, Dia and kes' theorem, Equation of	1 1 1 1 1 1		
components of laser - Activ al resonant cavity, Construction and working of Sem tative), Applications of lase etic field and Magnetic flux deric flux for Magnetic flux der ay's law fication of magnetic materi magnetic materials divergence theorem & Stol	re medium, Energy source, etion and working of Ruby niconductor laser er density nsity, Ampere's Circuital law, als-Para, Dia and kes' theorem, Equation of	1 1 1 1 1 1		
components of laser - Activ al resonant cavity, Construction and working of Sem tative), Applications of lase etic field and Magnetic flux deric flux for Magnetic flux der ay's law fication of magnetic materi magnetic materials divergence theorem & Stol	re medium, Energy source, etion and working of Ruby niconductor laser er density nsity, Ampere's Circuital law, als-Para, Dia and kes' theorem, Equation of	1 1 1 1		
components of laser - Activ al resonant cavity, Construction and working of Sem tative), Applications of lase etic field and Magnetic flux and for Magnetic flux der ay's law fication of magnetic materi magnetic materials	re medium, Energy source, etion and working of Ruby niconductor laser er density nsity, Ampere's Circuital law, als-Para, Dia and	1 1 1		
components of laser - Activ al resonant cavity, Construction and working of Sem tative), Applications of lase etic field and Magnetic flux is law for Magnetic flux der ay's law	re medium, Energy source, etion and working of Ruby niconductor laser er density nsity, Ampere's Circuital law,	1		
components of laser - Activ al resonant cavity, Construction and working of Sen tative), Applications of lase etic field and Magnetic flux	re medium, Energy source, ction and working of Ruby niconductor laser er density	1		
components of laser - Activ Il resonant cavity, Construc ruction and working of Sen tative), Applications of lase	re medium, Energy source, etion and working of Ruby niconductor laser er	1		
components of laser - Activ Il resonant cavity, Construc	re medium, Energy source, ction and working of Ruby	1		
ation inversion, Pumping, N	Aetastable states	1		
ple of laser - conditions for		1		
4.1 Properties of laser, Absorption, Spontaneous emission and stimulated emission				
x ,	omagnetic Theory (9 hours			
aracteristics of pn junction		1		
equation (Derivation)		1		
rge flow across a pn junction and and reverse biased pn ju	on	1		
sic and extrinsic	ion - Qualitative description	1		
sic semiconductor(qualitat ation of pn junction, Fermi	-	_		
ntration with temperature	Variation of intrinsic carrier	1		
ensity of holes in the valence	ce band	1		
	rons in the conduction hand			
	ctor rilysics (9 nours)	1		
		1		
0		1		
		1		
	alues and normalized wav um Mechanical Tunnelling um Computing (Qualitativ MODULE III: Semicondu sic semiconductor tion of the density of elect	e in a one- dimensional box - Derivation of energy ralues and normalized wave function um Mechanical Tunnelling (Qualitative) um Computing (Qualitative) MODULE III: Semiconductor Physics (9 hours) sic semiconductor tion of the density of electrons in the conduction band ensity of holes in the valence band		

			Computer Science and Engineering (CSI						
1	Electrical conductivity and Superconductivity	2	Variation of the critical magnetic field with temperature using simulation lab.						
		2	Determination of the size of lycopodium powder using a laser.						
2	Quantum Mechanics	2	Quantum mechanical tunnelling using simulation.						
		2	Particle in a 1D box using simulation.						
		2	V-I characteristics of solar cells.						
3	Semiconductor Physics	2	Diode characteristics.						
		2	V-I Characteristics of Zener Diode.						
		2	Laser-determination of wavelength using diffraction grating.						
4	Laser and Electromagnetic 2 Faraday's law of electromagnetic induction.								
		2	CRO-Measurement of frequency and amplitude of wave forms.						
	(Any 2 experiment	ts from ea	ach topic to be completed)						
			nt Questions						
C01	with Temperature. 3. Apply Meissner effect to prov	tion and ve that s	explain variation of Fermi function uperconductor is perfectly diamagnetic. I superconductors with suitable						
CO2	 Give the physical significance of wave function? By applying Heisenberg's uncertainty principle prove the absence of electrons inside the nucleus. An electron is confined to a one dimensional potential box of length 2Å. Calculate the energies corresponding to the first and second quantum states in eV. Write down the Schrodinger equation for a particle in a one dimensional infinite square well potential and also derive the equation for normalised wave function and energy eigenvalues for a particle in 1 D Box. 								
C03	 and energy eigenvalues for a particle in 1 D Box. Explain the variation of intrinsic carrier concentration with temperature. Derive the density of electrons in the conduction band and the density of holes in the valence band in the intrinsic semiconductor. Explain the Energy band diagram of pn junction. Apply the principle of pn junction and hence explain the construction and working of a solar cell 								

14

 1. Distinguish between spontaneous and stimulated emission. 2. Explain the construction and working of a ruby laser with the help of energy level diagrams by applying the concept of stimulated emission. 3. Compare the properties of paramagnetic, diamagnetic and ferromagnetic materials with two examples for each. 4. A magnetising field of 1800 A/m produces a magnetic flux of 3 x 10 ⁻⁵ Wb in an iron bar of cross-sectional area 0.2 cm². Calculate the permeability. 1. Determine the band gap energy of the semiconductor. 2. Determine the size of lycopodium powder using a laser. 3. By applying the principle of Diffraction determine the wavelength of a laser source using a diffraction grating arrangement. 4. Draw the V-I Characteristics of Zener Diode. 		
 Determine the band gap energy of the semiconductor. Determine the size of lycopodium powder using a laser. By applying the principle of Diffraction determine the wavelength of a laser source using a diffraction grating arrangement. 	C04	 2. Explain the construction and working of a ruby laser with the help of energy level diagrams by applying the concept of stimulated emission. 3. Compare the properties of paramagnetic, diamagnetic and ferromagnetic materials with two examples for each. 4. A magnetising field of 1800 A/m produces a magnetic flux of 3 x 10⁻⁵ Wb in
Droparac	C05	 Determine the band gap energy of the semiconductor. Determine the size of lycopodium powder using a laser. By applying the principle of Diffraction determine the wavelength of a laser source using a diffraction grating arrangement. Draw the V-I Characteristics of Zener Diode.

Prepared by Ms.Jimi K J Asst. Prof., ASH

24EST003	ENGINEERING GRAPHICS	L	Т	Р	R	С	Year of Introduction
		3	0	0	0	3	2024

Preamble:

Practicing Engineers require the ability to translate ideas into tangible designs and interpret existing drawings. "Engineering Graphics" covers fundamental principles such as orthographic projections, dimensioning, sectional views, surface development, isometric projections and conversion of isometric to orthographic projection. This course equips students with essential skills in engineering drawing, preparing them for careers in Engineering.

Prerequisite: Nil

Course Outcomes: After the completion of the course, the student will be able to

CO1	Translate the principles of orthographic projections to prepare projections of
	lines and solids.[Apply]

CO2 Prepare sectional views and develop surfaces of a given solid. **[Apply]**

CO3 Convert between 2D orthographic views and 3D isometric projections effectively. [Apply]

	CO-PO MAPPING											
CO	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012
CO1	3	3	2				-			2		
CO2	3	3	2		y		1			3		
CO3	3	3	2	EDUG	ALION	IS DE	DICATI	ON		3		

	Assessme	nt Pattern f	or Theory	
Bloom's Category	Continu	ious Assess	End Semester	
	Test1	Test2	Other tools	Examination
Remember			1	
Understand			1	
Apply	1	1	1	✓
Analyze				
Evaluate				
Create				
	Mark I	Distribution	of CIA	1
			Theory[L-T]	

					Со	mputer Science (and En	gineering (CSE			
Course Structur e [L-T-P- R]	Attend	Attendance		Attendance Test-1 Test-2		Class work/ Assignment	Т	Total Marks			
3-0- 0-0	5		10	1	0	15		40			
	Total Marks distribution										
Total M	arks	CL	A(Marks)		l	ESE(Marks)	ESE	Duration			
100)		40	60			2hrs 30min				
]	End Ser	nester Ex	ami	natio	n [ESE]: Pattern					
		PAR	RTA			PARTB		ESE Marks			
PATTERN 3	3	N.	A		fro wh	uestions will be g m each module, o ich 1 question sh be answered, eac carrying 15 mark ırks:(4x15=60ma	ut of ould h s.	60			
					ABUS			Duraita ati any af			

E)

MODULE I: Introduction to Engineering Drawing and Orthographic Projection of Points and Lines (11 Hours)

Introduction: Relevance of technical drawing in engineering field. Types of lines, Dimensioning, BIS code of practice for technical drawing. (No questions for the end semester examination)

Projection of points in different quadrants, Projection of straight lines inclined to one plane and inclined to both planes. Traces of a line. Inclination of lines with reference planes True length and true inclinations of line inclined to both the reference planes. Questions limited to Lines in first quadrant , lines in first & second quadrants, lines in first & third quadrants, Lines in third quadrant)

MODULE II: Orthographic Projections of Solids (10 Hours)

Projection of Simple solids such as Triangular, Rectangle, Square, Pentagonal and Hexagonal Prisms, Pyramids, Cone, Cylinder and tetrahedron. Projection of solids in simple position. Projection of solids with axis inclined to one of the reference planes and with axis inclined to both reference planes.

MODULE III: Section of solids and Development of Surfaces (10 Hours)

Sections of Solids: Sections of tetrahedron, Prisms, Pyramids, Cone, Cylinder with axis in vertical position and cut by different section planes. True shape of the sections. (Exclude true shape given problems)

Development of Surfaces: Development of surfaces of the solids and solids cut by different section planes with axis of the solid perpendicular to HP. (Exclude problems with through holes and shortest distance between two points)

MODULE IV: Isometric Projection and Multi-view Projection (5 Hours)

Isometric Projection: Isometric scale- Isometric View and Projections of Prisms, Pyramids, Cone, Cylinder, Frustum of Pyramid, Frustum of Cone, Sphere, Hemisphere and their combinations.

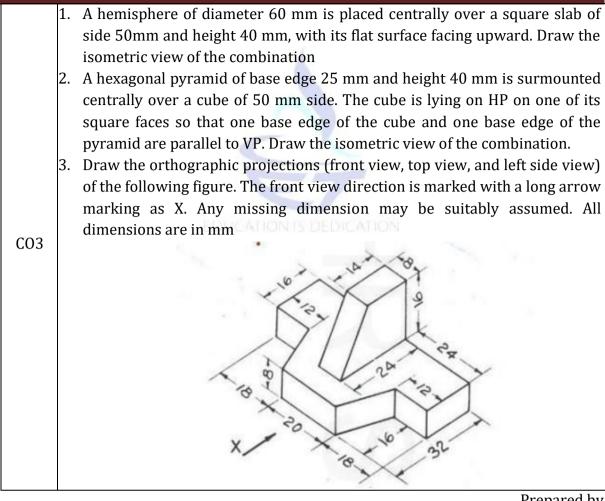
Multi view Projection- Conversion of pictorial views to orthographic view(F.V,T.V & S.V) **Textbooks**

- 1. P.I. Varghese, Engineering Graphics, Tata McGraw Hill Education
- 2. Prof. J Benjamin, Engineering Graphics, Pentex Publishers
- 3. John, K.C. Engineering Graphics, Prentice Hall India Publishers.
- 4. N.D. Bhatt, Engineering Drawing, Charotar Publishing House
- 5. Agrawal, B. And Agrawal, C.M., Engineering Drawing, Tata McGraw Hill Publishers.

Reference books

- 1. Luzaddff, W.J. and Duff, J.M., Fundamentals of Engineering Drawing, PHI.
- Duff, J.M. and Ross, W.A., Engineering Design and Visualisation, Cengage Learning.

NPTEL/SWAYAM Courses for reference:


- Engineering Drawing, Prof P.S. Robi, IIT Guwahati https://nptel.ac.in/courses/112103019
- 2. Engineering Graphics and Design, Naresh V Datla, Sunil R Kale, IIT Delhi <u>https://archive.nptel.ac.in/courses/112/102/112102304/</u>

No.	D. COURSE CONTENTS AND LECTURE SCHEDULE						
	MODULE1 (11 Hours)						
1.1	Relevance of technical drawing in engineering field. Types of lines and their Uses	1					
1.2	Dimensioning, BIS code of practice for technical drawing.	1					
1.3	Orthographic Projection Concepts-Projection of points in different quadrants- Problems	1					
1.4	Projection of straight lines parallel to both HP and VP- Problems	1					
1.5	Projection of straight lines perpendicular to either HP or VP and parallel to other- Problems	1					
1.6	Projection of straight lines inclined to either HP or VP and parallel to other- Problems	1					

1.7	Trace of a line- Concept	1
1.8	Projection of straight lines inclined to both HP and VP – Line	2
	rotation method- Problems	2
1.9	Projection of straight lines inclined to both HP and VP – Plane	2
	rotation method- Problems	2
	MODULE II(10 Hours)	
2.1	Types of Solids	1
2.2	Projection of solid in simple position- Problems	1
2.3	Projection of solid inclined to any one reference plane. – Problems	3
2.4	Projection of solid inclined to both reference plane Problems	5
	MODULE III (10 Hours)	
3.1	Types of Section planes and True shape of section	1
3.2	Sectional view of solids when section plane is parallel to HP and	1
	Perpendicular to VP- Problems	I
3.3	Sectional view of solids when section plane is parallel to VP and	1
	Perpendicular to HP- Problems	I
3.4	Sectional view of solids and true shape of section when section	1
	plane is inclined to HP and Perpendicular to VP- Problems	I
3.5	Sectional view of solids and true shape of section when section	1
	plane is inclined to VP and Perpendicular to HP- Problems	
3.6	Development of surfaces- concept	1
3.7	Development of surfaces- Prism	1
3.8	Development of surfaces- Pyramid	1
3.9	Development of surfaces- Cone and Cylinder	1
3.10	Development of sectioned solids-Problems	1
	MODULE IV (5 Hours)	
4.1	Isometric Projection- Isometric Scale- Isometric Drawing	1
4.2	Isometric Projection/drawing of solids- Problems	1
4.3	Isometric Projection/drawing of Combination of solids – Problems	1
4.4	Isometric Projection/drawing of sphere & hemisphere – Problems	1
4.5	Multi-view Projection Concept -Problem	1
	Total Hours	36
	CO Assessment Questions	

	4	
	1.	The distance between end projectors of a line CD is 65mm. End C is 15mm
		above HP and 40mm in front of VP. Its front view and top view makes an
		angle of 40 ⁰ and 45 ⁰ respectively with XY- line. Draw the projections, find the
		true length and true inclinations with HP and VP, and locate its traces. The
		line is in the first quadrant.
	2.	The front view of a line AB measures 70mm and makes an angle of 50 ⁰ with
		XY-line. The end A is in the HP and the VT of the line is 30mm above HP. The
		line is inclined at 40 ⁰ to the VP. Draw the projections of the line, find its true
		length and true inclination to HP, and locate its HT.
	3.	-
0.01		other endpoint is 50 mm above HP and is 42 mm in front of VP. Draw the
C01		projections of line AB if its elevation measures 70 mm. Find out its true length
		and the true inclinations with respect to the reference planes.
	4.	A cone of base diameter 40 mm and axis 60 mm long touches the VP on a
		point of its base circle. The axis is inclined at 30° to VP and the front view of
		its axis is inclined at 45 ⁰ to XY line. Draw its projections.
	5	A square pyramid of base edge 30 mm and height 60 mm is resting on HP on
	5.	its triangular face such that the square face edge on HP is inclined 30 ⁰ to VP.
		Draw its projections.
	6.	A pentagonal prism 30 mm base edge and 60 mm height is on HP on one of
	0.	
		its base edges so that the axis is inclined at 45° with HP and the base edge on
		which it rests is inclined at 30 ⁰ with VP. Draw the projections of the solid.
	1.	A pentagonal pyramid side of base 30 mm, height 65 mm has its base on the
		ground and one of its base edge is parallel to and nearer to VP. This pyramid
		is cut by a section plane perpendicular to VP, passing through a point on the
		axis which is 20 mm below the apex and making an angle of 40° with HP.
		Draw the front view, sectional top view and true shape of the section.
	2.	
C02		HP with one of the base edges parallel to VP. It is cut by a section plane
002		inclined towards right at an angle of 30^{0} to HP and perpendicular to VP. The
		section plane meets the axis of the prism at a height of 45 mm from the base.
		Draw the front view, sectional top view, and true shape of the section.
	3.	A pentagonal prism of base 30 mm and axis 60 mm long is kept with its base
		on HP with a base edge perpendicular to VP. It is cut by a plane inclined at
		45 ^o to HP, perpendicular to VP and passing through the midpoint of the axis.
		Draw the development showing the remaining portion of the solid.

Prepared by Dr Nixon K, Principal Mr. Mathews V J Asst. Prof, ASH

1									1	Т			1		
24EST	'104R1	FOUI	NDA	LIONS O	F CO	ΜΡΙΙΤΙ	NG	L	Т	P	R	C	In	Year o troduc	
21201	101111				1 00			3	0	0	0	3		2024	
Prean	nble: Tł	ne cour	se en	ables stu	dents	to unde	rstand t	-	-	-	-	•	ompoi		
				ng with									-		v 1
				netic, and											
explai	explain computer architecture concepts, including CPU functions, instruction cycles, and														
	different processor types. Additionally, the course equips students to use basic operating system commands, write simple shell scripts, and understand foundational computer														
						ll scrip	ots, and	un	der	sta	ind	foı	undatio	onal co	omputer
netwo	rking an	nd secu	rity p	rinciples	•										
		NT-1													
	quisite:		Afton	the com	plati	on of th	0.001170	o th		+ 112	dont		illhad	bla to	
Course				the com	-										4
CO 1	CO 1 Describe types of computer systems, hardware components, and the computer boot process.(Understand)														
	-	\[em conve	ersion	s hinar	v arithm	etic	an	nd I	hasic	: 10	oic de	sion 11s	nσ
CO 2	digital c				.151011	, uniai	,		, un		JU010	. 10	Die de	Sign us	
	Ŭ		<u>` 11</u>		itectu	ire, insti	uction of	evele	e. a	nd	com	pa	re RIS	C and (CISC
CO 3	CO 3 Explain basic computer architecture, instruction cycle, and compare RISC and CISC architectures.(Understand)														
	Demonstrate basic command-line usage shell scripting and explain computer network														
CO 4	components and security basics.(Apply)														
	1				· · ·	11 0/	APPINO	j							
CO	P01	P02	PO	3 PO4	PO	5 PO	6 PO 7	P	80	3	POS)	P010	P011	P012
CO 1	3	2				1	1		1		1		2	2	3
CO 2	3	3	2		2 1						2		2	2	3
CO 3	3	3	1	3	1		1				2		2	2	3
CO 4	2	2	2	3	3		4		2		3		3	3	2
			Ass	essment	t Patt	tern for	Theor	y Co	om	po	nen	t			
				Contir	nuous	Assess	ment T	ools							
Dloom	's Cate	aoni	ŀ						F	Eno	d Sei	me	ster E	xamina	ation
DIUUII	IS Call	gory		Test1	T	est 2	Other	too	ls						
Remen	nber							r							
Under				$\frac{\mathbf{v}}{}$		$\frac{1}{}$	√ √	r		v 1					
Apply				$\frac{1}{\sqrt{2}}$		$\frac{1}{}$	√ √	r	+				$\frac{1}{\sqrt{1-1}}$		
Analyz	e			•		•	• •		+				•		
Evalua									+						
Create									+						
				M	ark E	Distribu	ition of	f CIA	1						
Cou	rse					Theo									
Struc		Atte	nd											1.1.5	
e [L-] R]	Г-Р-	a nce	9	Assignr	nent	Tes	st-1	r .	Гes	st-2	2		Tot	al Mar	ks
3-0-	0-0	5	5	10		12.5			12	2.5				40	
				Тс	otal M	larks d	listribu	tio	n						
i						-	-								

		()	<u> </u>
Total Mark	CIA (Marks)	ESE (Marks)	ESE Duration
S			

PATTERN 2 questi module	End Semester Exam PART A	ination [ESE]: Pattern	
2 questi module			
module	PARIA	PART B	ESE Marks
questio	ions from each ions, each n carries 3 marks (3x8 =24 marks)	2 questions will be given each module, out of whic question should be answ Each question can h a maximum of tw subdivisions. Each question carries 9 r Marks: (9x4 = 36 marks)	ch 1 ered. have 60 70 marks.

SYLLABUS

MODULE I: Overview of Computer Systems and Hardware (9 hours)

Introduction to Computer -Classification of Computer Systems: Based on size, functionality and application (microcomputers, minicomputers, mainframes, supercomputers, embedded systems) Evolution of Computing: Computer generations and key developments Hardware Components:CPU and its components, Memory hierarchy: Registers, Cache, RAM, ROM, Virtual Memory, Motherboard and chipset overview, I/O Devices: Input, Output, and Hybrid Devices, Storage Devices: HDD, SSD, Optical Drives, System Bus, Interface Cards, and Firmware. Booting Process and

BIOS/UEFI Basics of Device Management and I/O Communication.

MODULE II: Number Systems and Digital Logic (9 hours)

Number Systems: Binary, Octal, Decimal, Hexadecimal, Number Conversion and Representation (integers and characters), Binary Arithmetic: Addition, Subtraction, Multiplication, Division (overview),Digital Codes: ASCII, Unicode, BCD, Gray Code, Logic Gates: AND, OR, NOT, XOR, XNOR - truth tables and symbolic representation, Universal Gates: NAND and NOR - Implementation o logic gates, Basic Combinational Circuits: Half Adder and Full Adder,2:1 Multiplexer (MUX),2-to 4 Line Decoder.

MODULE III: Computer Architecture and Processors (9 hours)

Introduction to Computer Architecture, CPU Components: ALU, CU, Registers, Buses Instruction Cycle: Fetch, Decode, Execute, Instruction Format and Types, Assembly Language Basics Instruction Set Architectures: RISC vs. CISC, Introduction to Modern Processors: Microprocessors vs. Microcontrollers, Role of GPUs and SoCs (brief

overview)

MODULE IV: System Software and Networking Fundamentals (9 hours)

System Software Overview: Operating Systems, Compilers, Linkers, Operating System Functions Process, Memory, File, and Device Management, Introduction to Linux and Windows-Basic shel commands and file handling-Introduction to Bash scripting, Computer Networks: Network Types: LAN, MAN, WAN-Network Models: Client-Server vs. Peer-to-Peer-Topologies: Star, Ring Bus, Mesh-IP Addressing Basics, DHCP, NAT, Introduction to DNS, VPN, Routers, Firewalls Concepts of Network Security: Endpoint and Perimeter Security, The Internet, WWW, and Web Servers.

Ref	eren	ce books	
		amentals of Computers by V. Rajaraman (6th Ed., 2018)	
2. 2		tured Computer Organization by Andrew S. Tanenbaum (6th Ed.,	
		ern Operating Systems by Andrew S. Tanenbaum (4th Ed., 2014)	
4. 1	Digit	al Fundamentals by Thomas L. Floyd (11th Ed., 2015)	
5. 1	Unix	and Shell Programming by B.A. Forouzan & R.F. Gilberg (1st Ed., 2003)	
NI	PTEI	L/SWAYAM Courses for reference:	
1.	<u>Com</u>	<u>puter System Organisation - Course</u>	
	<u> </u>	<u>al Electronic Circuits - Course</u>	
<u>3.</u>	Com	<u>puter Networks And Internet Protocol - Course</u>	- 1
			No. of
N	0.	COURSE CONTENTS AND LECTURE SCHEDULE	Hour
			s (36)
		MODULE 1 [9 hours]	(30)
1	.1	Classification of Computer Systems	
1	2		1
1	.2	Evolution of Computers	1
1	.3	CPU and Memory Hierarchy	1.5
1	.4	Motherboard and Peripherals	1.5
1	.5	Storage Devices & I/O Devices	1.5
1	.6	Buses, Firmware, Interface Cards	1.5
1	.7	Boot Process	1
		MODULE II [9 hours]	·
2	.1	Introduction to Number Systems	2
2		Representing Numbers and Characters	1
2	.3	Binary Arithmetic	1
2	.4	Digital Codes	1
		Logic Gates	1
2	.6	Universal Gates	1
2	.7	Combinational Circuits	2
		MODULE III [9 hours]	
3	.1	Introduction to Computer Architecture	1
3	.2	Components of the CPU	1.5

Fetch–Decode–Execute Cycle Assembly Language Basics Instruction Set Architectures – RISC & CISC Introduction to Modern Processors MODULE IV [9 hours] System Software Overview Operating System Functions Introduction to Linux and Windows	1 1.5 1.5 1				
Instruction Set Architectures – RISC & CISC Introduction to Modern Processors MODULE IV [9 hours] System Software Overview Operating System Functions	1.5 1				
Introduction to Modern Processors MODULE IV [9 hours] System Software Overview Operating System Functions	1				
MODULE IV [9 hours] System Software Overview Operating System Functions					
System Software Overview Operating System Functions	1				
	1				
Introduction to Linux and Windows					
	2				
č					
	1				
Network Types and Network Models	1				
Topologies	1				
IP Addressing and Protocols	1				
DNS, VPN, Routers, Firewalls	1				
Network Security Concepts:					
The Internet, WWW, and Web Servers:	1				
CO Assessment Questions					
 Differentiate between microcomputers and mainframes in performance and use-case. Arrange the memory types in hierarchy based on speed and proxin CPU: Cache, RAM, Registers, Virtual Memory, ROM Compare HDD, SSD, and optical drives in terms of speed, cost, a durability Describe the role of BIOS/UEFI in the booting process Differentiate between interrupt-driven I/O and programmed I/O wexamples 	imity to and				
 Convert the following-(1101)² to decimal,(58)¹⁰ to binary,(2F)¹⁶ to decimal,(73)¹⁰ to hexadecimal Represent the decimal number -18 using 8-bit 2's complement for Convert the decimal number 42 to its ASCII and BCD equivalent Differentiate between XOR and XNOR gates with examples Explain the working of a 2-to-4 line decoder with a truth table Differentiate between computer architecture and computer organize. Explain the role of registers in instruction execution. Write a simple assembly language program to add two numbers. Compare RISC and CISC architectures in terms of instruction commony usage, and execution speed. Define GPU and SoC. Explain their roles in modern computing speed. 	orm ts e. ization mplexity,				
	 IP Addressing and Protocols DNS, VPN, Routers, Firewalls Network Security Concepts: The Internet, WWW, and Web Servers: CO Assessment Questions 1. Differentiate between microcomputers and mainframes in performance and use-case. 2. Arrange the memory types in hierarchy based on speed and proxi CPU: Cache, RAM, Registers, Virtual Memory, ROM 3. Compare HDD, SSD, and optical drives in terms of speed, cost, a durability 4. Describe the role of BIOS/UEFI in the booting process 5. Differentiate between interrupt-driven I/O and programmed I/O vexamples 1. Convert the following-(1101)₂ to decimal,(58)₁₀ to binary,(2F)₁₆ t decimal,(73)₁₀ to hexadecimal 2. Represent the decimal number -18 using 8-bit 2's complement for 3. Convert the decimal number 42 to its ASCII and BCD equivalent 4. Differentiate between XOR and XNOR gates with examples Explain the working of a 2-to-4 line decoder with a truth tabl 1. Differentiate between computer architecture and computer organ 2. Explain the role of registers in instruction execution. 3. Write a simple assembly language program to add two numbers. 4. Compare RISC and CISC architectures in terms of instruction comemory usage, and execution speed. 				

	1. Explain the function of a linker in program execution.
	2. Describe how an OS manages process scheduling.
	3. List key differences between Linux and Windows file systems.
	4. Compare LAN, MAN, and WAN based on coverage area and use
CO4	5. Explain how firewalls protect networks from external threats.

24E	SR105	5	ALGOR	ІТНМІ	C THIN	IKING	L	T	P	R	С	Ir	Year ntrodu	
			WITH F	РҮТНО	N		2	0	2	1	4	2024		
Prea	mble:	The s	yllabus	is pre	pared	with th	ne vie	ew o	f pi	epari	ng t	he	engine	ering
gradı	lates to	be ca	pable o	of writi	ng read	lable Py	rthon	prog	gran	is to s	solve	со	mputa	tional
probl	lems th	at they	v may h	ave to	solve in	n their p	orofes	sion	al li	ves. T	he co	our	se cont	ent is
				-	0	ming fui	ndam	enta	ls, w	vhich o	can b	e ta	aught v	vithin
the gi	iven slo	ots in tl	he curri	iculum										
Prere	quisite	: NIL												
Cours	e Outc	omes:	After tł	ne com	pletion	of the c	ourse	e the	stu	dent v	vill b	e a	ble to	
CO 1	Analyz	e and	develop	o an alg	orithm	n for solv	ving c	omp	uta	tional	prob	oler	ns. [Ap	ply]
CO 2			-			h intera		-					-	
						, and de								
CO 3	Utilize	modu	lar Pytł	ion pro	grams	using fu	inctic	ons a	nd	proc	cess	S	tored	data
						es. [App								
CO 4	Under	stand a	and imp	olemen	t file op	peration	s for	read	ing	input	and	sto	ring ou	tput.
	[Under	rstand]											
					CO - I	PO MAP	PING	ſ						
CO	P01	P02	P03	P04	P05	P06	P07	P)8	P09	PO	10	P011	P012
CO1	3	3	3		-									3
CO2	3	3	3	2			3		3					3
CO3	3						75							3
CO4	3													3
			Asses	sment	Patter	rn for T	heor	y Co	mp	onent				
D	loom'a	Catag	0 MU	Co	ntinuo	us Asse	ssme	ent T	ool	S			Semest ninatio	
D	loom's	Categ	01 y	Te	st1	Test	2	2 Other			E	Xall	matio)11
							1	tools	5					
Remen	nber													
Under	stand													
Apply								√						
Analyz	ze													
Evalua	ite													
Create														
			Assess	sment	Patter	n for Pr	actic	al Co	omp	onen	t			
Bloom	ı's Cate	gorv				Conti	nuou	s As	ses	smen	t Too	ols		
	Jun	. Бот у			Cla	ss worl	K]	Гes	t	
Remer	nber													

Computer Science and Engineering (CSE)

Understan	d								und Di	√	ring (CSI	
Apply												
Analyze												
Evaluate												
Create												
		A	ssess	ment	Pattern f	or Proj	ect Co	mpone	nt			
Bloom's Category					Conti	nuous	Assess	ment T	ools			
					Eval	uation	1	Evalua	ation 2	R	Report	
Remember								\checkmark				
Understand	d								\checkmark			
Apply												
Analyze												
Evaluate												
Create					6							
				Ма	rk Distri	bution	of CIA			•		
		Th	eory	[L]	Prac	ctical [H	P] Project [R] Total		
Course Structur e [L-T-P- R]	At te nc an ce	sig I n me	Te st- 1	Te st- 2	Class Work		Test	Eval uati on 1	Eval uati on-2	R e p o rt	l otal Mark s	
2-0-2-1	5	5	7.5	7.5	7.5		5		7.5	5	50	
				To	tal Marks	distrik	oution					
Total	Marl	KS	C	IA (Ma	arks)	E	SE (Ma	rk)	ES	SE Dur	ation	
10	00			50)		50			2 hr	`S	
			Ε		mester Ex	kamina	tion [E	ESE]				
PATTER			-	PAR					PART			
Total		Гotal o	Questions from each modul otal of 8 Questions, Answer testions. Each carrying 3 ma (6x3 =18 marks)			any 6	modul should Each d of 3 su	le, out o 1 be ans	of which wered. In can ha ons.	n 1 que ave a m	om each stion naximum	
									rks. (4x	8 = 32		
								ma	rks)			

SYLLABUS

MODULE I : Fundamentals of Algorithms (5 Hours)

Problem Solving strategies — Problem analysis — formal definition of problem — Solution — top- down design — breaking a problem into sub problems- overview of the solution to the sub problems by writing step by step procedure (algorithm) - Implementation of algorithms — use of procedures to achieve modularity.

Examples for algorithms - At least 10 problems (starting with non-numerical examples, and numeric problems like factorial, largest among three numbers, largest among N, Fibonacci.

MODULE II: Variable Expression and Statements (6 Hours)

Introduction to Python-variables, expressions and statements, evaluation of expressions precedence

of expressions, precedence,

string operations

Control statements, Boolean expressions and logical operators, conditional and alternative executions

MODULE III : Functions (6 Hours)

Functions, calling functions, Recursion, composition of functions, mathematical functions, user-defined functions, parameters and arguments.

MODULE IV : List, Dictionary Data Structures (6 Hours)

Strings and lists — string traversal and comparison with examples. List operations with examples tuples and dictionaries — operations and examples , Introduction to numpy, pandas, matplotlib , Files and exceptions - text files, directories, Introduction to classes and objects - attributes, instances(Basics Only)

Textbooks

EDUCATION IS DEDICATION

- 1. Downey, A. et al., How to think like a Computer Scientist: Learning with Python, John Wiley, 2022
- 2. Reema Thereja., Computer Fundamentals and Programming in C, Oxford, 2023
- 3. Lambert K. A., Fundamentals of Python First Programs, Cengage Learning India, 2019

4. Rajaraman, V., Computer Basics and C Programming, Prentice-Hall India Reference books

- 1. Barry, P., Head First Python, O' Reilly Publishers
- 2. Dromy, R. G., How to solve it by Computer, Pearson India
- 3. Guzdial, M. J., Introduction to Computing and Programming in Python, Pearson India
- 4. Perkovic, L., Introduction to Computing Using Python, 2/e, John Wiley, 2015
- 5. Sprankle , M., Problem Solving & Programming Concepts, Pearson India
- 6. Venit, S. and Drake, E., Prelude to Programming: Concepts & Design, Pearson India
- 7. Zelle, J., Python Programming: An Introduction to Computer Science, Franklin, Beedle & Associates Inc.

	ne joy of Computing using Python - . <u>ttps://onlinecourses.nptel.ac.in/noc21_cs32/previe</u> <u>v</u>	
No.	COURSE CONTENTS AND LECTURE SCHEDULE	No. o Hours (24)
	MODULE I : Fundamentals of Algorithms (5 Hours)	
1.1	Problem analysis — formal definition of problem	1
1.2	Solution — top- down design	1
1.3	breaking a problem into sub problems-	1
1.4	overview of the solution to the sub problems by writing step by step procedure (algorithm)	1
1.5	Examples	1
	MODULE II : Variable Expression and Statements (6 Hours)	<u> </u>
2.1	variables, expressions	1
2.2	statements, evaluation of expressions	1
2.3	Precedence, string operations	1
2.4	Control statements	1
2.5	Boolean expressions and logical operators	1
2.6	conditional and alternative executions	1
	MODULE III : Functions (7 Hours)	
3.1	Functions	1
3.2	Calling functions	1
3.3	Composition of functions	1
3.4	Recursion	1
3.5	Mathematical functions	1
3.6	User-defined functions	1
3.7	Parameters and arguments	1
	MODULE IV: List, Dictionary Data Structures (6 Hours)	
4.1	Strings and lists, string traversal and comparison	1
4.2	List operations with examples	1
4.3	tuples and dictionaries, operations and examples	1
4.4	Files and exceptions - text files, directories	1
4.5	Introduction to numpy, pandas, matplotlib	1
4.6	Introduction to classes and objects - attributes, instances	1

Proje	ct: Mini projects can be done in the respective engineering domain. LESSON PLAN FOR LAB COMPONENT (8 Experiments manda	ntory)
No.	Topic	No. of Hours (12)
1	Simple desktop calculator using Python. Only the five basic arithmetic operators	1
2	Create, concatenate, and print a string and access a sub-string from a given string.	1
3	Familiarize time and date in various formats (Eg. "Thu Jul 11 10:26:23	1
4	IST 2024"). Program to find the largest of three numbers.	1
5	Convert temperature values back and forth between Celsius (c), and Fahrenheit (f). [Formula: c/5 =f-32/9]	1
6	Program to find the factorial of a number	1
7	Write program to check whether the given number is Armstrong or not	1
8	Write various programs to implement numpy, Pandas and matplotlib	3
9	Write a program to implement file operations	1
10	Write a program to demonstrate OOPs concepts in python	1
	LESSON PLAN FOR PROJECT COMPONENT	
No.	Topic	No. of Hours (12)
1	Introduction and awareness on various stages of a Mini Hackathon.	6
2	Final Mini Hackathon, Presentation and evaluation.	6
	CO Assessment Questions	
CO	 Write an algorithm to compute sum of series 1 – x2/2 +x4/4-x6/ Give the algorithm for finding the largest and smallest numbers each list of N numbers Simple desktop calculator using Python. Only the five basic arit operators 	s in

39

	1. Evaluate the expression $x^{**}y^{**}z$. Given $x = 2$, $y = 3$, $z=2$
	2. Write a python program to display all Armstrong numbers in each range
CO2	3. Write a python program to count the number of zeros and negative
	terms in each set of n numbers
	4. Familiarize time and date in various formats (Eg. "Thu Jul 11 10:26:23
	IST
	2024").
	1. Why do we need functions? What are the advantages of function
CO3	2. Write a python program to find the sum of digits of a number
000	3. What do you mean by mutability of data structure? Explain with example
	why we say that list is mutable while tuples are immutable
	4. Program to find the factorial of a number
	1. Write a python program to create a text file and to input a line of text to it.
	Display the line pf text with all punctuation mark removed.
	2. Create a class rectangle with attributes length, breadth and method area ()
	to calculate the area of the rectangle. Create two instances of the class and
C04	call the method for each instance.
604	3. Write a program to read numbers stored in one file and store the sorted
	numbers in another after deleting duplicates.
	4. Write a program to implement file operations

Prepared By Dr. Sreeraj R Prof., CSE Ms. Livya George Asst.Prof. CSE

24HUT006	PROFESSIONAL ETHICS AND	L	Т	Р	R	С	Year of Introduction
	SUSTAINABLE DEVELOPMENT	1	0	2	0	2	2024

Preamble:

Engineering Ethics enables students to explore the ethical principles and responsibilities of engineers in their professional practice, using real-world case studies. Sustainable Development transform our world, recognize interdependence, enhance quality of life, enhance human responsibilities, eliminate pollution, conserve natural resources and uplift human-nature coexistence. Relevant case studies impart students, effective ways to practically apply their skills and their understanding of learned facts to a real-world situation. The presentation of case studies will provide an opportunity to read, understand and prepare technical report about sustainable, professional and socially responsible projects.

Prerequisite: NIL

Course Outcomes: After the completion of the course, the student will be able to

- CO1Understand key ethical principles and moral development theories that shape
the ethical behavior of a professional.CO2Analyze the role and responsibility as engineers through real world case studies
- CO2Analyze the role and responsibility as engineers through real world case studies
to solve moral and ethical problems.Appreciate the relevance and necessity of sustainable development and
- **CO3** recognize good practices and opportunities for an integrated approach to sustainable development
- **CO4** Understand case studies about sustainable and socially responsible projects which impart students an effective way to realize real-world situations

CO – PO MAPPING	CO	_	PO	MA	PF	PING
-----------------	-----------	---	----	----	----	------

СО	P01	P02	P03	P04	P05	P06	P07	P08	P09	P0 10	P0 11	P0 12		
CO1			1			3	2	3	2			3		
CO2			1			3	2	3	2	3	2	3		
CO3			1			3	3	2	2			3		
CO4			1			3	3	2	2	3	2	3		

Assessment Pattern

Bloom's	Continuo	ous Assessmen	t Tools	Case studios
Categor y	Test 1	Test 2	Assignment	Case studies
Remember	1	√		

Understand		1	1	1	1	
Apply		1	1	1	\ \	
Analyze						
		Mark	Distribution	of CIA		
	• • •		Theory [L]		Practical [P]	Total Marks
Course Structur e [L-T-P- R]	Atte nda nce	Assignme nt	Test-1	Test- 2	Cas e Stu dy	
1-0-2-0	5	5	20	20	50	100
			SYLLABUS			
			MODULE 1			
consideration Engineering as Engineers as M	in the dest s Experime fanagers, f s of Ethics n. Ethical c	ign and deplo entation – En Consulting En - Plagiarism- hallenges po	MODULE 2 gineers as res ngineers, Engi Professional F sed by emergi	ponomous ve ponsible Ex neers as Ex Rights-Empl ing technolo	perimenters- pert witnesses a oyee right- IPR	
			MODULE 3			
sustainability- MDG - SDG- Ne	social- ec exus betwo	onomic -envi een Technolo	ronmental su ogy and sustai n Nexus betwe	stainability. nable develo	bility- pillars of opment. ogy and Sustaina	able
			MODULE 4			
education- ge	ender equ laspects -	ality. Econo renewable e	omic aspects- nergy- zero w	society- o	verty-hunger - consumers - ir n emission-cons	dustries

42

Textbooks

- 1. Mike W Martin and Roland Schinzinger, Ethics in Engineering,4th edition, Tata McGraw Hill Publishing Company Pvt. Ltd, New Delhi,2014.
- 2. Our Common Journey: A Transition Toward Sustainability. National Academy Press.
- 3. Sustainable Development., Susan Baker, Taylor and Francis
- 4. Elliott, Jennifer. 2012. An Introduction to Sustainable Development. 4th Ed. Routledge, London
- 5. Rogers, Peter P., Kazi F. Jalal, and John A. Boyd. "An introduction to sustainable
- 6. development." (2012).

Reference books

- 1. Charles D Fleddermann, Engineering Ethics, Pearson Education/ Prentice Hall of India, New Jersey, 2004.
- 2. Charles E Harris, Michael S Protchard and Michael J Rabins, Engineering Ethics- Concepts and cases, Wadsworth Thompson Learning, United states, 2005.
- 3. Guidelines for Professional Conduct for Civil Engineers ASCE, 2008
- 4. UN Millennium Project (2005) Investing in Development: A Practical Plan to Achieve the Millennium Development Goals, Overview.
- 5. World Bank (2006) Enhancing Agricultural Innovation: How to Go beyond the Strengthening of Research Systems, World Bank: Agriculture and Rural Development
- 6. World Commission on Environment and Development (1987) Our Common Future, Oxford, OUP.

NPTEL Course

- 1. Ethics in Engineering Practice <u>https://nptel.ac.in/noc/individual_course.php?id=noc18-mg25</u>
- 2. Non-Conventional Energy Sources <u>https://nptel.ac.in/noc/individual course.php?id=noc18-ge14</u>
- Education for Sustainable Development https://onlinecourses.nptel.ac.in/noc22_hs61/previe w

No.	COURSE CONTENTS AND LECTURE SCHEDULE				
MODULE 1 (4 Hours)					
1.1	Introduction to Professional Ethics-Morals, Values and Ethics	1			
1.2	Personal and Professional ethics	1			

1.3	Key ethical principles-Honesty, integrity, respect, responsibility. Moral Development Theories (Kohlberg's theory, Gilligan's theory)				
1.4	Case studies on professional responsibility (Hyatt Regency Walkway Collapse, Ethical consideration in the design and deployment of autonomous vehicle)				
	MODULE 2 (4 Hours)				
2.1	Engineering as Experimentation – Engineers as responsible Experimenters-Engineers as Managers	1			
2.2	Consulting Engineers, Engineers as Expert witnesses and advisors	1			
2.3	Codes of Ethics- Plagiarism-Professional Rights-Employee right- IPR Discrimination.	1			
2.4	Ethical challenges posed by emerging technologies. Case Studies on emerging technologies (Artificial Intelligence	1			
MODULE 3 (4 Hours)					
3.1	Introduction to Sustainable Development- Concept of Sustainability- pillars of sustainability- social- economic -environmental sustainability				
3.2	MDG - SDG- Nexus between Technology and sustainable development	1			
3.3	Case studies on SDGs	1			
3.4	Case studies on Nexus between Technology and Sustainable development				
MODULE 4 (4 Hours)					
4.1	Pathways for sustainable development, social aspects - poverty- hunger - health -education- gender equality	1			
4.2	Economic aspects- society- consumers - industries	1			
4.3	Environmental aspects - renewable energy- zero waste - Carbon emission- conservation of ecosystem- global environmental issues				
4.4	Case studies on Sustainable habitat, Sustainable Industry	1			
LESSON PLAN FOR CASE STUDIES					
No.	Торіс	No. of Hours (20)			
1	Do Case studies of emerging trends in technology, sustainable, socially and professionally responsible projects	5			

2	Selection of a case study for presentation and prepare a technical report	15
No.	Case Study Assessment	Marks
1	Selection of case study - Relevance of topic to the Course	10
2	Preparation of case study	15
3	Submission of Technical Report on case study	25
	CO Assessment Questions	
C01	 Define integrity and point out ethical values. Discuss in detail about moral development theories Investigate the responsibilities of a professional with case studies 	
CO2	 Illustrate the role of engineers as experimenters. Exemplify the engineers as managers. Investigate the ethics in emerging technologies with case studies 	
CO3	 Explain the necessity for Sustainable Development. Enumerate SDG. Describe the challenges and barriers to sustainable development Give any three examples for Nexus between Technology and Sustainable development. 	
CO4	 Describe Sustainable practices for achieving Economic sustainability Enumerate global environmental issues Investigate the Sustainable practices for sustainable habitat with case studies 	7

Prepared by: Ms. Mini M, Asst. Prof., CE Ms. Elsa Raju A, Asst. Prof., CSE Ms. Uma E S, Asst. Prof., CSE

			CON	IPUTE	RAI	DED		L	Т	Р	R	C	Year of	
24ES	SL007			WING									Introdu	iction
				NUFA	-	-		0	0	2	0	1	2024	
				WORK	SHOF	D		Ũ	Ũ		Ū	-		
Prea	mble:													
The c	ourse is	s desigr	ned to e	empow	ver sti	udents to	o explo	ore t	he fi	ull p	ote	ntia	l of com	puter-
													ques. Sti	
			-									s for pla	0	
													idents v	
													nt meth	ods of
			esses e	employ	red in	industr	y for fa	abri	catin	ng co	omp	one	ents.	
	equisit													
Cour	se Outo	comes:	After t	he con	ıpleti	on of the	e cours	se th	ie st	udei	nt w	vill k	be able t	0
C01	Identi	fv mech	anical	operat	ions	in accor	dance	witł	ı ma	nufa	actu	irin	g of proc	lucts.
		erstand		I					-	-	-	•		
CO2	L			nced m	etrol	ogy insti	umen	ts u	sed i	n ge	ener	al v	vorksho	p.
										-			[Apply]	r ⁻
CO3		-				ng CAD s					ie en	ioui	[
CO4					-	-		_			tino		nnarod	-0
04	D4 Critically assess the advantages and limitations of 3D printing compared to traditional manufacturing methods. [Understand]													
	traute		ununuc	uring		PO MAP		anu	1					
CO	PO	P02	PO3	PO4	POS		P07	P	08	PO	a 1	PO1	l PO1	P01
U	1	102	105	104	103		107		00	10	-	0	1	2
C01	2				-	-)				2		0		2
COI	2									2				
CO2					3	-	25			2				
CO3					2		7					3		
				PIDU	16.14	-	DICA	indi	8		'	0		
CO4					3									
	•	•		A	Asses	sment I	Patter	n						•
Bloo	n's Cat	egory				Contin	uous	Ass	essn	nent	t To	ols		
21001		-8 <i>j</i>				Classw				-	l'est			
Reme	mber					Glubbil	$\frac{1}{\sqrt{1}}$							
	rstand						$\frac{\mathbf{v}}{\sqrt{\mathbf{v}}}$						$\frac{\mathbf{v}}{}$	
Apply							$\frac{\mathbf{v}}{\sqrt{\mathbf{v}}}$						$\frac{\mathbf{v}}{}$	
Analy							v v						v	
Evalu							v 1							
Creat						√ 								
Great	C			Ma	rl, D	ctribut	ion of	<u>CI A</u>						
Mark Distribution of CIA														
Cours		т	Atte	endan	ce	Classw	ork	La	ıb Ex	xam			fotal Ma	rks
Struc P-R]	ture [I	-1-												
1-1/	0-0-2-0 5					35 10 50			50					
	0-0-2-0 5								10 50					

		Total Mark	distribution	
Tot	al Marks	I	T	ESE Duration
100		CIA(Marks)	ESE(Marks)	ESE Duration
	50	50	0	-
		SYLLABUS-DETAIL	S OF EXPERIMENTS	
	SEC	-	uring Lab Experimen nents are mandatory	nts)
Genera	l study of man	•	Foundry – Sheet meta	l – Fitting – Welding
	-	n manufacturing metl	-	i i itting weiding
		SECTION – 2 (CAD	Lab Experiments)	
		Minimum 5 experin	nents are mandatory	
Introdu	iction to Comp	outer Aided Drawing ((CAD) – 2D Drafting –	3D Modeling
Textbo	ooks			
			nn PHI Learning Editio	
-	gineering Mate tion 43, 2019	erials, S C Rangwala C	harotar Publishing Ho	use Pvt Limited
		ophics Essentials w	vith AutoCAD 202x	Instruction
01 2118	0	stie Plantenberg ,SDC		
Refere	nce Books			
			Vol-1-Manufacturing	•
Cho Pub	oudhury A K olishers2008	Hajra Choudhury I	Vol-1-Manufacturing Nirjhar Roy MPP M Dook Steve Heather Ind	edia Promoters and
Cho Pub	oudhury A K olishers2008	Hajra Choudhury I eling: Exercise Workt LIST OF EX	Nirjhar Roy MPP Me book Steve Heather Ind PERIMENTS	edia Promoters and
Cho Pub	oudhury A K olishers2008 oCAD 3D Mod	Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactu	Nirjhar Roy MPP Mo book Steve Heather Ind PERIMENTS ring - 12Hrs	edia Promoters and dustrial Press Inc.,U.S
Cho Pub 2. Aut	oudhury A K olishers2008 oCAD 3D Mod	Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactu Minimum 5 experin	Nirjhar Roy MPP Me book Steve Heather Ind PERIMENTS ring - 12Hrs nents are mandatory	edia Promoters and dustrial Press Inc.,U.S
Cho Pub	oudhury A K olishers2008 oCAD 3D Mod	Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactu Minimum 5 experin	Nirjhar Roy MPP Mo book Steve Heather Ind PERIMENTS ring - 12Hrs	edia Promoters and dustrial Press Inc.,U.S
Cho Pub 2. Aut	oudhury A K olishers2008 oCAD 3D Mod (General-Intr	Hajra Choudhury I eling: Exercise Workh LIST OF EX Manufactu Minimum 5 experin Ex	Nirjhar Roy MPP Me book Steve Heather Ind PERIMENTS ring - 12Hrs nents are mandatory speriments p practice – safety pre	edia Promoters and dustrial Press Inc.,U.S
Cho Pub 2. Aut No.	oudhury A K olishers2008 oCAD 3D Mod (General-Intr aid knowled Welding- Un	Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactu Minimum 5 experin Ex roduction to worksho ge – Study of worksho derstanding arc welc	Nirjhar Roy MPP Me book Steve Heather Ind PERIMENTS ring - 12Hrs nents are mandatory speriments p practice – safety pre	edia Promoters and dustrial Press Inc.,U.S) cautions – Basic first
Cho Pub 2. Aut No. 1	oudhury A K olishers2008 oCAD 3D Mode (General-Intr aid knowled Welding- Un on horizonta	Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactu Minimum 5 experin Ex oduction to worksho ge – Study of worksh iderstanding arc welc al bead formation.	Nirjhar Roy MPP Me book Steve Heather Ind PERIMENTS ring - 12Hrs nents are mandatory speriments p practice – safety pre op tools ling process and comp	edia Promoters and dustrial Press Inc.,U.) cautions – Basic first
Cho Pub 2. Aut No. 1 2	oudhury A K olishers2008 oCAD 3D Mode (General-Intr aid knowled Welding- Un on horizonta Metrology- (Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactur Minimum 5 experim Ex roduction to worksho ge – Study of worksho iderstanding arc weld al bead formation. Common measuring in	Nirjhar Roy MPP Me book Steve Heather Ind PERIMENTS ring - 12Hrs nents are mandatory xperiments p practice – safety pre op tools ling process and comp	edia Promoters and dustrial Press Inc.,U.S) cautions – Basic first onents – Experiment
Cho Pub 2. Aut No. 1	General-Intraid knowled Welding- Un on horizonta Metrology- (Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactu Minimum 5 experim Ex roduction to worksho ge – Study of worksho iderstanding arc weld al bead formation. Common measuring in using instruments like	Nirjhar Roy MPP Me book Steve Heather Ind PERIMENTS ring - 12Hrs nents are mandatory xperiments p practice – safety pre op tools ling process and comp nstruments used in wo e Vernier Caliper, micr	edia Promoters and dustrial Press Inc.,U.S) cautions – Basic first onents – Experiment
Cho Pub 2. Aut No. 1 2 3	oudhury A K olishers2008 oCAD 3D Mode General-Intr aid knowled Welding- Un on horizonta Metrology- (to measure u Height Gaug	Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactur Minimum 5 experim Ex roduction to worksho ge – Study of worksho iderstanding arc weld al bead formation. Common measuring in using instruments like e (Ordinary & Digital)	Nirjhar Roy MPP Me book Steve Heather Ind PERIMENTS ring - 12Hrs nents are mandatory xperiments p practice – safety pre op tools ling process and comp nstruments used in wo e Vernier Caliper, micr).	edia Promoters and dustrial Press Inc.,U.S) cautions – Basic first onents – Experiment
Cho Pub 2. Aut No. 1 2 3 4	oudhury A K olishers2008 oCAD 3D Mode General-Intr aid knowled Welding- Un on horizonta Metrology- (to measure u Height Gaug Modern mar	Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactur Minimum 5 experim Ex roduction to worksho ge – Study of worksho iderstanding arc weld al bead formation. Common measuring in using instruments like e (Ordinary & Digital nufacturing method-3	Nirjhar Roy MPP Me book Steve Heather Ind PERIMENTS ring - 12Hrs nents are mandatory xperiments p practice – safety pre op tools ling process and comp nstruments used in wo e Vernier Caliper, micr). 3D printing	edia Promoters and dustrial Press Inc.,U.S) cautions – Basic first onents – Experiment orkshop, experiments rometer, Vernier
Cho Pub 2. Aut No. 1 2 3	Metrology- (Metrology- (Metro	Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactur Minimum 5 experim Ex roduction to worksho ge – Study of worksho derstanding arc weld al bead formation. Common measuring in using instruments like e (Ordinary & Digital nufacturing method-3 s-Demonstration of th	Nirjhar Roy MPP Me book Steve Heather Ind PERIMENTS ring - 12Hrs nents are mandatory xperiments p practice – safety pre op tools ling process and comp nstruments used in wo e Vernier Caliper, micro). D printing the following power too	edia Promoters and dustrial Press Inc.,U.S) cautions – Basic first onents – Experiment orkshop, experiment ometer, Vernier
Cho Pub 2. Aut No. 1 2 3 4	widhury A K blishers2008 oCAD 3D Mode (General-Intraid knowled Welding- Un on horizonta Metrology- (to measure u Height Gaug Modern man Power Tools inverter wel	Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactur Minimum 5 experim Ex oduction to worksho ge – Study of worksho iderstanding arc weld al bead formation. Common measuring in using instruments like (Ordinary & Digital nufacturing method-3 s-Demonstration of th ding set, portable pow	Nirjhar Roy MPP Me book Steve Heather Ind PERIMENTS ring - 12Hrs nents are mandatory xperiments p practice – safety pre op tools ling process and comp nstruments used in wo e Vernier Caliper, micr). 3D printing the following power too wer planer, Portable ji	edia Promoters and dustrial Press Inc.,U.S) cautions – Basic first onents – Experiment orkshop, experiment orkshop, experiment oneter, Vernier
Cho Pub 2. Aut No. 1 2 3 4	widhury A K blishers2008 oCAD 3D Mode (General-Intraid knowled Welding- Un on horizonta Metrology- (to measure u Height Gaug Modern man Power Tools inverter wel Portable cire	Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactur Minimum 5 experim Ex roduction to worksho ge – Study of worksho derstanding arc weld al bead formation. Common measuring in using instruments like e (Ordinary & Digital nufacturing method-3 s-Demonstration of the ding set, portable pow cular saw, Portable pow	Nirjhar Roy MPP Me book Steve Heather Ind PERIMENTS ring - 12Hrs nents are mandatory xperiments p practice – safety pre op tools ling process and comp nstruments used in wo e Vernier Caliper, micro). D printing the following power too	edia Promoters and dustrial Press Inc.,U.S) cautions – Basic first onents – Experiment orkshop, experiment orkshop, experiment ometer, Vernier
Cho Pub 2. Aut No. 1 2 3 4 5	Metrology- C to measure u Height Gaug Modern man Power Tools inverter wel Portable circ Foundry- Ur	Hajra Choudhury I eling: Exercise Workt LIST OF EX Manufactur Minimum 5 experim Ex roduction to worksho ge – Study of worksho derstanding arc weld al bead formation. Common measuring in using instruments like e (Ordinary & Digital nufacturing method-3 s-Demonstration of the ding set, portable pow cular saw, Portable pow cular saw, Portable Di-	Nirjhar Roy MPP Me book Steve Heather Inc PERIMENTS ring - 12Hrs nents are mandatory xperiments p practice – safety pre op tools ling process and comp nstruments used in wo e Vernier Caliper, micr). D printing the following power too wer planer, Portable ji rilling machine, Angle	edia Promoters and dustrial Press Inc.,U.S) cautions – Basic first onents – Experiment orkshop, experiment

8	Sheet Metal: Understanding sheet metal working tools and knowledge of at
	least one model.
	CAD LAB - 12Hrs
	(Minimum 5 experiments are mandatory)
1	Computer Aided Drawing (CAD): Introduction, Role of CAD in design and
	development of new products, Advantages of CAD. 2D Drawing Exercise I: Introduction to common drafting tools and
	annotations.
2	2D Drawing Exercise II: Introduction to common modification tools.
3	2D Drawing Exercise III: 2D drafting and property changing.
4	2D Drawing Exercise IV: 2D drafting using different drafting methods.
5	2D Drawing Exercise V: Drafting orthographic projection and isometric
	view.
6	3D Drawing: Introduction to different 3D modeling tools.
7	3D Drawing Exercise I: Introduction to solid editing.
8	3D Drawing Exercise II: Introduction to different modify tools.
	CO Assessment Questions
C01	1. Identify the tools given to you and demonstrate their proper use.
001	2. Choose a suitable manufacturing process to make the given model.
CO2	1. Identify the given measuring instrument and demonstrate its proper us
	2. Take the 3D printout of the given drawing.
CO3	1. Prepare 2D drawings using CAD software.
005	2. Prepare 3D drawings using CAD software.
	1. Find the advantages of 3D printing compared to
CO4	traditional manufacturing processes.
	 Find the limitations of 3D printing compared to traditional manufacturing processes.
	a automai manaiactai mg processes.

Prepared by Mr. Anoop Lonappan, Asst. Prof., ASH Mr. Mathews V J, Asst. Prof, ASH Mr Jojo P J, Lab Instructor Mr Aashik P P, Lab Instructor

								L	Т	Р	R	C	Year o	f	
24MA	T211	LIN	EAR A	LGEB	RA								Introd	uction	
								3	0	0	0	3	20)24	
Pream	nble:	•											•		
This c	ourse	enable	es the	stude	nts to	under	stand	the	basi	ic co	ncep	ot of	f Linear	algebra	
involv	ing sc	olution	of lin	lear s	ystem	of eq	uation	is an	d d	liago	nali	zatio	on occu	rring in	
Comp	uter So	cience a	and En	iginee	ring. 🛛	This co	urse in	ntrod	uce	s the	con	cep	t of vecto	or space	
which	is an	abstra	ct fran	newor	k for	studyi	ng line	ar oj	pera	ation	s us	ing	basis an	d linear	
transf	ormati	ions. S	Studen	ts ut	ilize	inner	produ	ct sp	pace	e to	per	for	n least	square	
appro	ximati	ons an	d orth	ogona	l proj	ections	. Thro	ugh t	his	cour	se, s	tud	ents pra	ctice	
moder	rn eng	ineerin	ig and	IT too	ls to s	olve co	omplex	c pro	bler	ns.					
	-			<u> </u>		rix theo	<u> </u>								
Cours	e Out	comes	: After	the co	omple	tion of	the co	urse	the	stuc	lent	will	be able	to	
CO 1								0					ar equat	ions	
<u> </u>						trix is	<u> </u>								
CO 2		elop an or spac			critic	ai thini	king sk	alls t	nro	ugn	SOIVI	ng p	oroblem	susing	
CO 3	-	-			ner p	roduct	spaces	s to d	o le	asts	ดบลา	re ai	oproxim	ations	
000		-	-		-	[Apply	-		0 10	abeb	quu	l o uj	spi onni	ations	
	-	-					-	posit	ion	s usi	ng th	neir	matrix		
CO 4		esenta									-0				
					CO	- PO N	IAPPI	NG							
CO	P01	P02	P03	P04	P05	P06	P07	PO	B P	09	PO	10	P011	P012	
CO 1	3	3	2	3	3	T	7								
CO 2	3	3	3	2	3	IONE IS	DEDIG	ATT	ŝŃ						
CO 3	3	3	3	2											
CO 4	3	3	3	2	3										
I					Ass	essme	nt Pat	tern						-1	
Bloon	n's Cat	egory	0	Contin	uous	Asses	sment	: Too	ls				End Sem		
			1	ſest1		Test 2	Otl	her t	ool	S			Examin	ation	
Reme	mber														
Understand															
Apply															
Analys	se														
Evalua	ate														
					ļ										

		Ма	rk Dist	ributio	n of CIA			
				T	heory [L]			
Course Structure [L-T-P-R]	Attendance		Assign	ment	Test-1	Te	st-2	Total Marks
3-0-0-0		5	10 12.5 12.5				12.5	40
		То	tal Mar	k distri	bution		-	
Total Mark	KS .	CIA (N	Aarks)	Ε	SE (Marks	;)	E	SE Duration
100		4	0		60			2.5 hours
	Er	nd Semest	ter Exan	ninatio	n [ESE]: Pa	atter	'n	
PATTERN		PART A			PART B ns will be §			ESE Marks
PATTERN 1	Quest each r quest marks	s: (3x8 =24	ach ha s 3 di 4 M	hich 1 c nswered ave a ma visions ach que arks. arks: (9	n module, c juestion sh l. Each que aximum of stion carric 0x4 = 36 ime: 3 hou	be n can	60	
				LABUS				
		MOD	ULE I: (Linear	Algebra)			
(Text 1: Releva	ant top	ics from s	ections	7.3,7.5	,8.1,8.4)			
Systems of linea	r equat	ions, Solut	tion by C	auss el	imination.	Row	echelo	on form and rank
of a matrix. Fund	dament	al theoren	n for line	ear syst	ems. Eigen	valu	es and	eigenvectors.
Diagonalization	of matr			<u>(1)</u> -				
(Tout 2. Dolors	nttor			<u> </u>	r Spaces)	7)		
(Text 2: Releva Vector Spaces (F dimension, coor	R^n , m x	n) , Subspa , and chan	aces. Lin ge of ba	ear inde sis.	ependence,	, Line	ear spa	n, Basis and
(Tout 2. Dolored	nttor				duct spac	-		
-	produc onal pro gonal Su	t in R ⁿ -No ojection, (ubspaces.	rm, leng)rthogor	th, dista 1al and	ince, dot pr Orthonori	rodu mal	-	le, inner product 'he least square
		MODULE	IV: (Lin	ear Tra	nsformati	ion)		

	Computer Science and En	gineering (CSI
(Text 2	: Relevant topics from sections 1.8,1.9)	
Linear	transformations, Kernel of Linear transformation, Rang	ge of Linear
transfor	mation, matrices for linear transformation, Compositic	on of linear
transfor	mations.	
	extbooks	
	rwin Kreyszig, Advanced Engineering Mathematics, 10thEdition Sons, 2016	, John Wiley
	avid C Lay, Linear Algebra and its Applications,3 rd Edition, Pears	son 2006
	ice books	5011,2000
	ilbert Strang, Linear Algebra and its Applications,4 th Edition, Cer	1929e 2006
	eymour Lipschutz, Marc Lipson, Schaum's outline of linear algeb	00
	rd Edition, McGraw-Hill, New Delhi, 2017.	1 4,
	eter V. O'Neil, Advanced Engineering Mathematics, Cengage, 7th	Edition, 2012
4. V	eerarajan T., Engineering Mathematics, Tata McGraw-Hill, New	
	elhi,3 rd Edition, 2008	
	.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, dition, 2015.	, 44th
	mmie Gilbert and Linda Gilbert, Linear Algebra and Matrix Theo	rv
	niversity of South Carolina at Spartanburg,1995	ı y,
	/SWAYAM Courses for reference:	
	rof. Arbind Kumar Lal. Linear Algebra, IIT Kanpur, [NPTEL],	
	ttps://archive.nptel.ac.in/courses/111/104/111104137/ (Relevant	sections)
	rof.Pranav Haridas,Linear Algebra, IIT Madras, [NPTEL],	
<u>h</u>	ttps://archive.nptel.ac.in/courses/111/106/111106135	
2 0		
	rof. Gilbert Strang, Linear Algebra [MITOPENCOURSEWARE] https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/	(Relevant
	ections)	
		No. of
No.	COURSE CONTENTS AND LECTURE SCHEDULE	Hour
		s [36 hours]
	MODULE I [9 hours]	[00.0000]
1.1	Systems of linear equations	1
1.2	Solution by Gauss elimination	2
1.3	Row echelon form and rank of a matrix	2
1.4	Fundamental theorem for linear systems, eigenvalues and	2
	eigenvectors	
1.5	Diagonalization of matrices	2
	MODULE II [9 hours]	
2.1	Vector Spaces(R ⁿ , m x n)	2
2.2	Subspaces	1
2.3	Linear independence	1
2.4	Linear span	1

2.5	Basis and dimension	2
2.5		2
2.0	Co-ordinates and change of basis MODULE III [10 hours]	Z
3.1	Length and dot product in R ⁿ	1
3.2	Norm, length, distance	1
3.3	Dot product, Angle	1
3.4	Inner product spaces	2
3.5	Orthogonal projection	1
3.6	Orthogonal and Orthonormal sets	1
3.7	The least square problem	1
3.8	Orthogonal Subspaces	2
5.0	MODULE IV [8 hours]	2
4.1	Linear transformations	2
4.2	Kernel of Linear transformation	1
4.3	Range of Linear transformation	1
4.4	Matrices for linear transformation	2
4.5	Composition of linear transformations	2
7.5	CO Assessment Questions	2
	1. Find the rank of the matrix	
C01	 [0 1 0] -1 0 -4] 0 4 0] 2. Find the eigenvalues of the matrix [1 2] 3. Use a (MATLAB/SCILAB) to find the matrix of transfordiagonalizes the matrix . Also, write the diagonalizes the matrix . Also, write the diagonalizes the following linear system of equations using the Gausses method x+2y-z=3, 3x-y+2z=1, 2x-2y+3z=2 (using any program language). 	l matrix. elimination
CO2	 Prove that the vectors (2,3,0). (1,2,0) and (8,13,0) are linead dependent in R³ Find the basis of the matrix	rs er the field R. 2,-1)}and 5,-2) relative by software.

Computer Science and Engineering (CSE)

	1. Show that (1,1,1), (1,0,-1),(1,-2,1) are mutually orthogonal.
	2. For what values of k is the following an inner product in R^3
	$=x_1y_1-3x_1y_2-3x_2y_1+kx_2y_2$
CO3	3. Find an orthonormal basis for the subspace spanned by the vectors
	(1,2,1), (1,0,1),(3,1,0) of R ³
	4. Verify that the following is an inner product in R ² :
	$\langle x,y \rangle = x_1y_1 - 2 x_1y_2 - 2 x_2y_1 + 5 x_2y_2$
	1. Check which of the following is a linear transformation?
	(i) $T(x,y)=(x^2,y^2)$ (ii) $T(x,y) = (2x-y,x+3y)$
	2. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be defined by $T((x,y,z))=(x, x)$. Find Ker T and
	Range(T)
CO4	3. Let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be a linear transformation and $T(e_1)=(2,-1)$,
	T(e2)=(1,3),T(e3)=(-1,2). Use a CAS(MATLAB/SCILAB) to
	find L(-1,4,2),where {e1,e2,e3} is the standard basis for R^3_{2}
	4. The transformation T: P ₃ [x] \rightarrow P ₃ [x] is defined by T(p(x))= $\frac{d(p(x))}{dx^2}$, Find
	the matrix of T with respect to the basis $\{1, x, x^2, x^3\}$.
	Prepared by

Prepared by Mrs Lickny I Asst Prof., ASH

24CY	C012		ENGI	NEERIN	NG CHE	MIST	RY	L	Τ	P	R	C		f uction
								3	0	2	0	4	2	024
	mble													
				-			-						-	orrosion
						• •					-			nalytical
	-						-				-		-	into the
			· ·				0	-			• •			ential for
	-	g conte	-		0									onmental
		-		-	-					-				essary to
				•						0	eerin	ıg fi	elds, en	suring a
robu	st fou	ndation	for ta	ckling	comple	x real	worl	d proł	olem	IS.				
Prer	equis	i te: Bas	sic kno	wledg	e in Ch	emistr	y and	Phys	ics					
Cou	rse Oı	itcome	s : Afte	r the c	omplet	ion of	the co	ourse	the s	stud	ent v	vill	be able t	0
CO1	Emp	loy the	funda	mental	princi	ples of	elect	roche	mis	try a	nd c	orro	osion, to	
	expl	ore thei	ir pote	ntial a	pplicati	ions ac	cross	differe	ent e	engii	neeri	ng	sectors.	
	[Ap]													
CO2		-	-			-		-					and in	-
		opriate			in va				c s	ecto	rs	thro	ough p	ractical
CO3	-	riment								2000	diffe	non	tonging	oring
LUS		ains. [A		allalyti	cal teci	mque	's ene	cuver	y ac	1055	ume	eren	t engine	ering
				nnlv th	e nrinc	inles (ofenv	ironm	ent	al ch	emi	strv	and wa	ste
CO4		agemer			e prine	ipico (lent			Jel y	una wa	500
		0			CO	- PO M	IAPP	ING						
CO	P01	P02	PO3	P04	P05	P06		PO	3 F	209	P01	0	P011	P012
CO 1		3	2	2		DIN 15	DED		JIN	2				1012
CO 2		3	_	2						2				
CO 3		3		2						2				
CO 4		3	3	2		2	3			2				
		U	_	_	nt Patt		_	eorv	Com		ent			
Blooi	m's Ca	tegory	1		nuous					- P - 1		En	d Seme	ster
													aminat	
			Т	'est1		Test 2		Othe	r to	ols				
R	emem	her												
I.	Remember			v					v				v	
Uı	nderst	and												
								V						
	Appl	у												
	Analy	se												

		1							unu 21.9			
Evalua	ate											
Crea	nte											
Grea	ite											
		Assess	ment Pa	attern		Lab con						
Bloom's C	Catego	ory			Continuous Assessment Tools							
			Clas	s work	7		Tes		[
Remember					1	/			1	<u>/</u>		
Understan	ld				1	/			1	V /		
Apply					1	/			1	V		
Analyse Evaluate												
Create												
Greate			М	ark D	istrihut	tion of C	ΙΑ					
			1•1			y [L- T]		acti	cal [P]			
					THEOL	/[L-1]	11	atu				
Course Structur e [L-T-P- R]		Attenda Assi nce ent		gnm	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		uou	sess		Total Marks		
3-0-2-0		5	5		7.5	7.5	15		10	50		
			Т	otal M	larks di	stributio	on			1		
Total Ma	rks	CI	A (Mark	ts) ESE (Marks)					ESE Duration			
100			50	6		50			2	2 hours		
		En	d Semes	ster E		tion [ES		tter	n			
PATTERN		PART A	EDI	ITAOU	PART	B	ON			ESE Marks		
PATTERN 2		2 Questions from each module. Total of 8 Questions, Answer any 6 questions Each carrying 3 marks (6x3 =18 marks)			each r quest ns. Each maxin Each mark	50						
				cvi	mark LABUS	s)						
MO		E I: Floci	rochom			rosion	Sciend	<u>به (0</u>	Hours)			
1.10			.i otnen	iisti y		10310113			nouisj			

Electrochemical Cell- Electrode potential- Nernst equation for single electrode and cell (numerical problems), reference electrodes – SHE & Calomel electrode – construction and working, Electrochemical series – applications, glass electrode & pH measurement, conductivity- measurement. Li-ion battery: construction and working. **Corrosion** –Electrochemical corrosion mechanism (acidic & alkaline medium), Galvanic series, Corrosion control methods - cathodic protection, sacrificial anodic protection and impressed current cathodic protection, electroplating of copper, electroless plating of copper.

MODULE II: Materials for Electronic Applications (9 Hours)

Nanomaterials - Classification based on dimension & materials, synthesis – sol gel & chemical reduction, Applications of nanomaterials – carbon nanotubes, fullerenes, graphene & carbon quantum dots – structure, properties & application.

Polymers - Fire retardant polymers- halogenated & non-halogenated polymers (examples only), Conducting polymers-classification, polyaniline & polypyrrole-synthesis, properties and applications.

Organic electronic materials and devices- construction, working and applications of Organic Light Emitting Diode (OLED) & dye-Sensitized Solar Cells (DSSC).

MODULE III: Molecular Spectroscopy and Analytical Techniques (9 Hours)

Spectroscopy-Types of spectra- molecular energy levels, Beer lambert's lawnumerical problems, Electronic spectroscopy – principle, types of electronic transitions, role of conjugation in absorption maxima, instrumentation, applications, Vibrational spectroscopy – principle, number of vibrational modes, vibrational modes of CO₂ and H₂O – applications.

Thermal analysis: Dielectric Thermal Analysis (DETA) of polymers-working and application.

Electron Microscopic Techniques: SEM - principle, instrumentation and applications.

MODULE IV: Environmental Chemistry (9 Hours)

Water characteristics - Hardness - types of hardness, temporary and permanent, disadvantages of hard water, degree of hardness (numericals). Water softening methods-ion exchange process-principle, procedure and advantages. Water disinfection methods – chlorination, break point chlorination, ozone and UV irradiation. Dissolved oxygen (DO), BOD and COD- definition & significance.

Waste Management: Sewage water treatment- primary, secondary and tertiary, flow diagram, trickling filter and UASB process. E Waste, methods of disposal – recycle, recovery and reuse.

Chemistry of climate change- Greenhouse gases, Ozone depletion.

Text books

- 1. Dr. Muhammad Arif M, Smt. Kavitha P Nair, Dr. Annette Fernandez"Engineering Chemistry", Owl Books,2021
- 2. Engineering Chemistry- B. L. Tembe, Kamaluddin, M. S. Krishnan-2018
- 3. Instrumental Methods of Analysis- H. H. Willard, L. L. Merritt, CBS Publishers,7th Edition,2005

	Computer Science and Eng	meering (CSE)							
Refe	rence books								
	Fundamentals of Molecular Spectroscopy C. N. Banwell McGraw-Hill, 4 2017	4 th edn.,							
	Principles of Physical Chemistry B. R. Puri, L. R. Sharma, M. S. Pathania Vishal Publishing Co 47th Edition, 2017								
	Engineering Chemistry- Jain & Jain, Dhanpath Rai Publishing Company,17 th Edition, 2015								
4. I	Introduction to Spectroscopy Donald L. Pavia Cengage Learning India Pvt. Ltd 2015								
	Polymer Chemistry: An Introduction Raymond B. Seymour, Charles E. Marcel Dekker Inc 4th Revised Edition, 1996	Carraher							
	Гhe Chemistry of Nanomaterials: Synthesis, Properties and Applicatio								
	C. N. R. Rao, Prof. Dr. h.c. mult. Achim Müller, Prof. Dr. A. K. Cheetham Verlag GmbH & Co. KGaA 2014	Wiley-VCH							
7. (Organic Electronics Materials and Devices Shuichiro Ogawa Springer	Гокуо 2024							
	nstrumental Methods of Analysis- H. H. Willard, L. L. Merritt, CBS Pub Edition,2005	olishers,7th							
NPT	EL/SWAYAM Courses for reference:								
Modu	ıle - I								
	https://archive.nptel.ac.in/courses/104/106/104106137/								
	Elementary Electrochemistry								
	<u>https://archive.nptel.ac.in/courses/113/105/113105102/</u> Electrochemical Energy storage								
	https://archive.nptel.ac.in/courses/113/104/113104082/								
	osion Module - II								
	<u>https://archive.nptel.ac.in/courses/113/104/113104102/</u> Nanomate and their properties	erials							
	https://archive.nptel.ac.in/courses/104/105/104105124/ Introduct	ion							
	o Polymer Science								
Modu	ale III								
	https://nptel.ac.in/courses/104106122/ Fundamentals of								
	roscopy Module IV <u>https://archive.nptel.ac.in/courses/122/106/122106030/</u> Environm	ontal							
	chemistry and analysis	entar							
		No. of							
No.	COURSE CONTENTS AND LECTURE SCHEDULE	Hours [36]							
	MODULE 1: Electrochemistry and Corrosion Science (9 Hours)								
	Electrochemical Cell- Electrode potential- Nernst equation for								
	single electrode and cell (numerical problems), reference	3							
1.1	electrodes – SHE & Calomel electrode –construction and working.	-							
1.2	Electrochemical series – applications, glass electrode & pH	2							
1.0	measurement, conductivity- measurement.								
1.3	Li-ion battery: construction and working,	1							
1.4	Corrosion –Electrochemical corrosion mechanism (acidic &	1							
	alkaline medium), Galvanic series,								

1.5	Corrosion control methods - cathodic protection, sacrificial	
	anodic protection and impressed current	2
	cathodic protection,	
	electroplating of copper, electroless plating of copper.	
	MODULE II: Materials for Electronic Applications (9 Hours)	
2.1	Nanomaterials - Classification based on dimension & materials,	
	synthesis – sol gel & chemical reduction, Applications of	2
	nanomaterials – carbon nanotubes, fullerenes, graphene & carbon	3
	quantum dots – structure, properties & application.	
	Polymers - Fire retardant polymers- halogenated & non-	2
2.2	halogenated polymers (examples only),	2
2.3	Conducting polymers-classification, polyaniline & polypyrrole-	
	synthesis, properties and applications.	2
2.4	Organic electronic materials and devices- construction, working	
	and applications of Organic Light Emitting Diode (OLED) & Dye-	2
	Sensitized Solar Cells (DSSC	
N	IODULE III: Molecular Spectroscopy and Analytical Techniques (9 Hours)
3.1	Spectroscopy-Types of spectra- molecular energy levels, Beer	1
	lambert's law – numerical problems.	
3.2	Electronic spectroscopy – principle, types of electronic transitions,	2
	role of conjugation in absorption maxima, instrumentation,	
	applications.	
3.3	Vibrational spectroscopy – principle, number of vibrational modes,	2
	vibrational modes of CO ₂ and H ₂ O – Applications.	
3.4	Thermal analysis: Dielectric Thermal Analysis (DETA) of	2
	polymers-working and application. 🧴	
3.5	Electron Microscopic Techniques: SEM - principle,	2
	instrumentation and applications.	
	MODULE IV: Environmental Chemistry (9 Hours)	
4.1	Water characteristics - Hardness - types of hardness, temporary	2
	and permanent, disadvantages of hard water, degree of hardness	
	(numericals).	
4.2	Water softening methods-ion exchange process-principle,	2
	procedure and advantages.	
4.3	Water disinfection methods – chlorination, break	2
	point chlorination, ozone and UV irradiation. Dissolved	
	oxygen (DO),	
	BOD and COD- definition & significance.	
4.4	Waste Management: Sewage water treatment- primary,	2
	secondary and tertiary, flow diagram, trickling filter and UASB	
	process. E	
	Waste, methods of disposal – recycle, recovery and reuse.	
4.5	Chemistry of climate change- Greenhouse gases, Ozone depletion	1
L	1	

	LESSON P	LAN FO	R LAB COMPONENT				
No.	Торіс	No. of Hour s	Experiment (24 hrs)				
1	Electrochemistry and Corrosion Science 4 1)Calibration of pH meter and determination of pH of a solution						
	2)Determination of cell constant conductance of solutions						
2	Materials for	6	1)Synthesis of polymers				
	Electronic Applications		a) Urea-formaldehyde resin				
			b) Phenol-formaldehyde resin				
			2)Estimation of copper in brass				
3	Molecular Spectroscopy and Analytical Techniques	6	1)Determination of wavelength of absorption maximum and colorimetric estimation of Fe ³⁺ in solution				
			2)Determination of molar absorptivity of a compound (KMnO4 or any water-soluble food colorant)				
4	Environmental Chemistry	8	1)Estimation of dissolved oxygen by Winkler's method				
			2)Estimation of total hardness of water- EDTA method				
			3)Estimation of chloride content in water				
	(Any 2 experiments	from e	ach topic are to be completed)				
			ent Questions				
	- 0		a 1 M ZnSO ₄ solution at 25°C. Calculate the				
			t $[Zn^{2+}] = 1$ M and $E^{\circ}(Zn^{2+} Zn) = -0.76$ V.				
	-	ntial cl	nange with temperature and concentration				
	variations.	emical	series, predict the feasibility of a reaction				
CC	u u		per(II) sulfate solution. Provide the relevant				
	half-reactions and expl						
	3. Give the construction o	f Li-ion	cell. Give the reactions that take place at the				
	-		and discharging. What happens to anodic				
	material when the cell i		C				
	4. Calibrate the pH meter	and def	termine pH of a given solution.				

		()
	1. Explain three important applications of nanomaterials.	
	2. Discuss the structural differences between Graphene and Carbon Quantum	n
	Dots (CQDs). Explain how their unique properties such as conductivity and	d
	optical behavior influence their applications in electronics and biomedica	al
	fields.	
CO2	3. Evaluate the conductivity and stability differences between Polyaniline and	
	Polypyrrole. Discuss their synthesis methods and applications in electroni	iC
	devices such as sensors and actuators.	
	4. Explain the construction and working principle of an Organic Light Emittin	ng
	Diode (OLED). Compare OLEDs with traditional LED technologies in terms	S
	of energy efficiency.	
	5. Synthesize Urea-formaldehyde resin and find its yield.	
	1. A dye solution of concentration 0.08M shows absorbance of 0.012 at 600	0
	nm; while a test solution of same dye shows absorbance of 0.084 under	r
	same conditions. Calculate the concentration of the test solution.	
	2. Explain the working principle of Dielectric Thermal Analysis (DETA) in	
CO3	analyzing polymers. Describe how DETA measures changes in dielectric	
	properties with temperature and frequency. Provide a schematic diagram	n
	illustrating the key components and their functions in a DETA setup.	
	3. Determine the wavelength of absorption maximum and colorimetric	
	estimation of Fe ³⁺ in solution.	
	1. Determine the temporary, permanent and total hardness of water	
	solution using EDTA method.	
	2. Explain the ion exchange resins and the process for removal of hardness	
	of water? How exhausted resins are regenerated? 3. Sketch the flow diagram of the different steps in sewage treatment.	
CO4	Explain the Each step.	
	4. Calculate the temporary and permanent hardness of a water sample	
	which contains	
	$[Ca^{2+}] = 160 \text{ mg/L}, [Mg^{2+}] = 192 \text{ mg/L} \text{ and } [HCO_{3^{-}}] = 122 \text{ mg/L}.$	
		Jo
	 Estimate the amount of dissolved oxygen present in the given water sample Prepared l 	

Prepared by Dr Sukhila Krishnan Asst.Prof. ASH

24EST023				ENTALS	L	Т	Р	R	С		ar of troduc	tion			
		& ELECTRONICS ENGINEERING						4	0	0	0	4	20	24	
Pream						1.	1.1 1		I	1		C T			1
				tudents This cou						-					
		0	0	tary con			-								/45
				current,	-	0					-				w of
the evo	lution	of mod	dern e	electron	ics and	d its app	olicati	ons.							
	-			d Mathe					-		-				
Course	Outco	mes:	After	the com	pletio	on of the	cours	se th	e st	ude	ntv	will	be	able to	
CO 1		-		pts and ation to			DC an	nd A(C el	ectr	ic c	ircı	uits '	theore	tically
<u> </u>		-		mental			theor	ems	to s	solv	e m	agr	netic	c circui	ts
CO 2	[Ap]					-						0			
CO 3	Ana	lyze th	e prir	nciples o	of diod	les, tran	sistor	s, an	d F	ETs	to	ma	ke b	asic	
603	elec	tronic	circui	its [Ana	lyze]							_			
CO 4	Und	erstan	d con	nmunica	ition s	ystems,	mobi	le te	chn	olog	gies	s, ar	nd m	nodern	
CO 4	elec	tronic	appli	cations	[Unde	erstand]								
					CO -]	PO MAI	PPING	r							
CO	PO	P02	PO3	8 PO4	P05	P06	P07	, I)	Р	09	P	0	PO	P01
00	1	102	100		100	100	107		0	-			1	1	2
						2			8				0	1	
CO 1	3	3			3	1	-	1							2
CO 2	3	3					1								2
CO 3	3	3		EDU	CALL	NIS DR	DICA	t of	-						2
CO 4	2				10000	amontl	Dattar								2
				Continu		sment l			c			E	nd 9	Semest	or
Bloom	's Cate	gory	╞	Test1		Test 2				too	s			inatio	
Remen	hor							Ju						matio	11
Kennen	IDEI			V		V						V			
Unders	tand			~		~						v			
Apply				~		~		V V							
Analys	е				~		~				v				
Evalua	te							~							
Create															
		[Ma	rk Di	stributi									
						Th	eory	[Լ-]]						

Structur e [L-T-P- R]	Attendance As		Assignment	Test-1	Test-	2	Total Mark		
4-0-0-0		5	10	12.5	12.5		40		
			Total Mark o	listribution		I			
Total Ma	rks	CLA	A (Marks)	ESE (Mai	rks)	ES	E Duration		
100			40	60					2.5 hours
	-		nester Examii	nation [ESE]: I	Pattern				
PATTERN		PAR	AT A		RT B		ESE Mark		
PATTERN 1	modul Answe Each c marks	le.8 Que er any 6 Juestion	om each stions. questions carries 3 24 marks)	2 questions w from each mo which 1 quest be answered. question can maximum of 2 divisions. Each question marks.	dule, out tion shoul Each have a 2 sub n carries 9	of ld)	60		
				Marks: (9x4 =	36 mark	s)			
			SYLLA circuits and F						
sources; Ohm voltage divisi	i's law ai ion rule	nd Kirch s; Capac	electric circu hoff's laws; Re itors & Induct	sistances in ser ors: V-I relatio	ries and pa ons and e	voltag aralle nergy	ge and curren l; Current an v stored. Star		
sources; Ohm voltage divisi delta conver problems Analysis of Solution of ne of network software. Elementary MMF, field s magnetic circ Electromagn	i's law and ion rules rsion (DC Elected etwork of equation Concepto strength cuits. Detic In induced merical	nd Kirch s; Capac resistive ctric cin equatior ns - nu ts of M , flux d duction l emf – problem	hoff's laws; Res itors & Induct e networks of cuits: Mesh of as. Node voltag merical proble agnetic circui ensity, relucta a: Faraday's la Self-inductan	sistances in ser ors: V-I relation only-derivation current metho ge methods-ma ems and verif its: Magnetic (ince - Compar aws, Lenz's la ce and mutua	ries and pa ons and e n not re d - matri atrix repre fication t Circuits: H rison bet aw- station l inducta	voltag aralle nergy equire x rep esenta hroug Basic ween cally	ge and currer l; Current an v stored. Stan ed)-numerica presentation ation-solutio gh simulatio Terminology electric an induced an		
sources; Ohm voltage divisi delta conver problems Analysis of Solution of ne of network software. Elementary MMF, field s magnetic circe Electromagn dynamically coupling - nut	a's law and ion rules rsion (DC Elected etwork of equation Concepto strength cuits. Detic In induced merical	nd Kirch s; Capac resistive ctric cin equatior ns - nu ts of M , flux d duction l emf – problem IODULE	hoff's laws; Res itors & Induct e networks o rcuits: Mesh o ns. Node voltag merical proble agnetic circui ensity, relucta : Faraday's la Self-inductan	sistances in ser ors: V-I relation only-derivation current metho ge methods-ma ems and verif its: Magnetic (ince - Compar aws, Lenz's la ce and mutua f AC circuits (ries and pa ons and e n not re d - matri atrix repre fication t Circuits: H rison bet aw- station l inducta 9 hours)	voltag aralle nergy equire x rep esenta hroug Basic ween cally ince,	ge and currer l; Current an v stored. Star ed)-numerica presentation ation-solutio gh simulatio Terminology electric an induced an coefficient o		

MODULE III: Introduction to Electronic devices (11 hours)

Passive and active components in electronics

Working of PN junction diode, V-I characteristics of PN Junction diode, Zener diode and avalanche breakdown. Basics of Zener voltage regulator, Block diagram of DC power supply, circuit and working of half wave and bridge rectifiers (with and without capacitor filters), Construction and working of BJT, Transistor as a switch,

Transistor as an amplifier (Circuit Diagram and working) Introduction to FET, Construction and working of N-channel and P-Channel MOSFETs Simscape Onramp,

Input output characteristics of CE configuration, Comparison of CE, CB and CC configurations, Simscape Onramp, Circuit Simulation Onramp

MODULE IV: Modern Electronics and its applications (10 hours)

Communication Systems: General block diagram of a Communication system, Block diagram of Fiber optic Communication system, Concept of AM and FM (No derivation required), Block diagram of FM superheterodyne receiver, Basic concepts of Wired and Wireless communication

Mobile Communication: Block diagram of GSM, Comparison of 3G, 4G and 5G communication technologies

Block diagrams of Electronic instrumentation system: Digital Multimeter, Function generator, CRO

Applications of modern electronics – IoT based smart homes, healthcare and agriculture (Case study only)

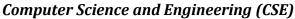
Text books

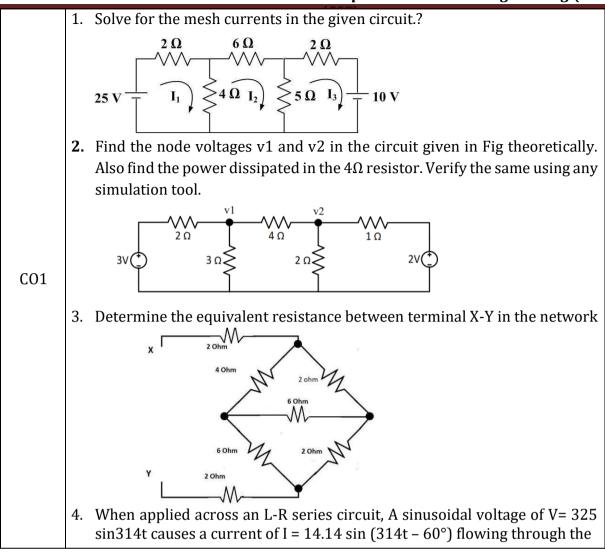
- 1. D P Kothari and I J Nagrath, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 2. D C Kulshreshtha, "Basic Electrical Engineering", Tata McGraw Hill, 2010.
- 3. ChinmoySaha, Arindham Halder and Debarati Ganguly, Basic Electronics -Principles and Applications, Cambridge University Press, 2018.
- 4. M.S.Sukhija and T.K.Nagsarkar, Basic Electrical and Electronics Engineering, Oxford University Press, 2012.
- 5. Wayne Tomasi and Neil Storey, A Textbook On Basic Communication and Information Engineering, Pearson, 2010.

Reference books

- 1. Del Toro V, "Electrical Engineering Fundamentals", Pearson Education.
- 2. T. K. Nagsarkar, M. S. Sukhija, "Basic Electrical Engineering", Oxford Higher Education.
- 3. Hayt W H, Kemmerly J E, and Durbin S M, "Engineering Circuit Analysis", Tata McGraw-Hill
- 4. Hughes, "Electrical and Electronic Technology", Pearson Education.
- 5. V. N. Mittle and Arvind Mittal, "Basic Electrical Engineering," Second Edition, McGraw Hill.
- 6. Parker and Smith, "Problems in Electrical Engineering", CBS Publishers and Distributors.
- 7. S. B. Lal Seksena and Kaustuv Dasgupta, "Fundamentals of Electrical Engineering", Cambridge University Press.
- 8. Anant Agarwal, Jeffrey Lang, Foundations of Analog and Digital Electronic Circuits, Morgan Kaufmann Publishers, 2005.
- 9. Bernard Grob, Ba sic Electronics, McGraw Hill.
- 10. A. Bruce Carlson, Paul B. Crilly, Communication Systems: An Introduction to Signals and Noise in Electrical Communication, Tata McGraw Hill, 5th Edition.

NPTEL/SWAYAM Courses for reference:


- 1. Prof. Ashok Kumar Pradhan, A Basic Course on Electric and Magnetic Circuits, IIT Kharagpur, [NPTEL], <u>https://nptel.ac.in/courses/108105479</u> (Relevant sections)
- 2. Dr. Nagendra Krishnapura, Basic Electrical Circuits, IIT Madras, [NPTEL], <u>https://nptel.ac.in/courses/108106172</u> (Relevant sections)
- 3. Mr. Abhijeet Lal & Dr. Onika Parmar, Fundamental of Electronic Engineering Chhattisgarh Swami Vivekanand Technical University (CSVTU) <u>https://onlinecourses.swayam2.ac.in/nou24_ec08/preview</u>
- 4. Prof. Sudeb Dasgupta, microelectronics: Devices to Circuits, IIT Roorkee, https://onlinecourses.nptel.ac.in/noc24_ee139/preview_


No.	COURSE CONTENTS AND LECTURE SCHEDULE	No. of Hour s [45 hours]						
	MODULE 1 [13 hours]							
1.1	Ideal and non-ideal voltage and current sources; Ohm's law and Kirchhoff's laws	1						
1.2	Resistances in series and parallel; Current and voltage division rules	1						
1.3	Capacitors & Inductors: V-I relations and energy stored	1						
1.4	Star-delta conversion (resistive networks only-derivation not required)-numerical problems	2						
1.5	Mesh current method - matrix representation - Solution of network equations – numerical problems and verification through simulation software.	2						
1.6	Node voltage methods-matrix representation-solution of network equations - numerical problems and verification through simulation software.	2						
1.7	Magnetic Circuits - Basic Terminology: MMF, field strength, flux density, reluctance - Comparison between electric and magnetic circuits	2						
1.8	Faraday's laws, Lenz's law- statically induced and dynamically induced emf – Self-inductance and mutual inductance, coefficient of coupling - numerical problems.	2						
	MODULE II [9 hours]							
2.1	Generation of alternating voltages - Representation of sinusoidal waveforms: frequency, period, average value, RMS value and form factor - numerical problems	2						
2.2	Analysis of simple AC circuits: Purely resistive, inductive & capacitive circuits; Inductive and capacitive reactance, concept of impedance	2						
2.3	RL, RC and RLC series circuits- power factor, active, reactive and apparent power - numerical problems and verification through simulation software.	3						

Computer Science and Engineering (CSE)

2.4	Generation of three phase voltages, advantages of three phase systems, star and delta connections (balanced only), relation between line and phase voltages, line and phase currents	2								
	MODULE III [13 hours]									
3.1	Working of PN junction diode, V-I characteristics of PN Junction diode	1								
3.2	Basics of Zener diode, Zener and avalanche breakdown. Basics of Zener voltage regulator	2								
3.3	Block diagram of DC power supply	1								
3.4	Circuit and working of half wave and bridge rectifiers (with and without capacitor filters)	2								
3.5	Construction and working of BJT, Input output characteristics of CE configuration	2								
3.6	Comparison of CE, CB and CC configurations	1								
3.7	Transistor as a switch, Transistor as an amplifier (Circuit Diagram and working)	1								
3.8	Introduction to FET, Construction and working of N-channel and P-Channel MOSFETs	2								
3.9	Simscape Onramp, Circuit Simulation Onramp	1								
	MODULE IV [10 hours]									
4.1	General block diagram of a Communication system, Block diagram of Fiber optic Communication system	1								
4.2	Concept of AM and FM (No derivation required), Block diagram FM super heterodyne receiver	2								
4.3	Basic concepts of Wired and Wireless communication	1								
4.4	Block diagram of GSM, Comparison of 3G, 4G, 5G and 6G communication technologies	2								
4.5	Block diagrams of Electronic instrumentation system: Digital Multi-meter	1								
4.6	Function generator, CRO	1								
4.7	IoT based smart homes	1								
4.8	IoT based healthcare and agriculture	1								
	CO Assessment Questions									

	circuit. Calculate (i) the Impedance of the circuit, (ii) the value of L and R,
	(iii) the power consumed
	5. A resistor of 10 Ω_{r} an inductor of 0.3 H and a capacitor of 100 μF are
	connected in series across a 230 V, 50 Hz, single-phase AC supply.
	Determine (a) impedance, (b) current, (c) power in watts, (d) circuit power
	factor, (e) voltage across the inductor, and (f) apparent power. Verify the
	same through any simulation software.
	6. Explain Kirchhoff's laws with suitable examples.
	7. Derive the expression for energy stored in an inductor and a capacitor
	8. An alternating current is represented by $i(t)=14.14 \sin (377t)$. Find (i)rms
	value, (ii) frequency, (iii)time period, and (iv)instantaneous value of the
	current at t=3ms.
	1. Distinguish between statically induced EMF and dynamically induced EMF.
	2. State and explain Faraday's laws of electromagnetic induction.
	3. A coil of 200 turns carries a current of 4A. The magnetic flux linkage with
	the coil is 0.02Wb. Calculate the self-induced emf in the coil.
	4. Explain the generation process of 3-phase alternating current
	5. Two coils, A and B, of 500 and 750 turns, respectively, are connected in
	series on the same magnetic circuit of reluctance 1.55×10^6 AT/Wb.
	Assuming no flux leakage exists, calculate (i) the self-inductance of each
	coil and (ii) the mutual inductance between coils.
CO2	6. Find the average and rms values of the given triangular signal.
	$\sqrt{1234567}$
	7. A conductor of length 0.5m kept at right angles to a uniform magnetic field
	of flux density $2Wb/m^2$ moves with a velocity of 75 m/s at an angle of 60°
	to the field. Calculate the emf induced in the conductor.
	1. Analyze the frequency response of an RC-coupled amplifier. Identify the
	factors determining the lower and upper cutoff frequencies and explain
	their significance in the amplifier's bandwidth.
	2. Analyze the output characteristics of a BJT and find out the significance of
CO3	the BJT's operating regions and their impact on the transistor's
	functionality in different circuit applications.
	3. Illustrate with the neat diagram the working of a zener voltage regulator.
	4. Analyze potential barrier formation and current in a forward biased pn
	junction diode.
C04	1. Compare and contrast between AM and FM.
	Sahrdava College of Engineering and Technology (Autonomous)

2. Draw and explain the block diagram of FM superheterodyne receiver.
3. Explain with a neat diagram the working of the function generator.
4. Compare the different types of communication technologies.

Prepared by,

Ms. Drisya K Sasi, Assistant Professor, Department of EEE Mr. Sebin Davis K, Assistant Professor, Department of EEE Dr. Vishnu Rajan, Associate Professor, Department of ECE Ms. Chinchu Jose, Assistant Professor, Department of ECE Dr. Annet Antony, Assistant Professor, Department of ECE

0.456								I	4	Г	Р	R	C	Year of	
24ES0	204		PRO	OGRAMING IN C						1	2	0	4	Introdu 2024	ction
		<u></u>		212042024is prepared with the view of preparing the Engineering									<u> </u>		
Graduates capable of writing readable C programs to solve computational prob they may have to solve in their professional life. The course content is decided t the essential programming fundamentals which can be taught within the give the curriculum. Prerequisite: NIL										l proble cided to	ms that cover				
	-		A.C		1	6.1						• 1	11	11.	
		comes: A													<u> </u>
	1 Analyze a computational problem and develop an algorithm/flowchart to find i solution. [Analyze]												ind its		
		-		progra	ms wit	th brand	chin	g and	lloc	ppi	ngs	state	eme	nts, whi	ch uses
		netic, Lo						-		-	-				
	data 1	to be pr	ocesse	d and o	levelo	p a rea	dab	le mi	ılti-	fur	ncti	on (C pr	n for stor ogram b blem [A	oy using
CO 4	paran	readab neter ng and o			es. [A]	pply]			r ar	ray	y pr	oce	ssin	g and	
				1		PO MAI	-								
CO	P01	P02	P03	P04	P05	P06	PC)7]	90 9	3	PO	9 I	P01	0 P011	
CO 1 CO 2	3	3	3	23	6					_					2
CO 2 CO 3	3	3	3	3		-		-		_				2	2
CO 3	3	3	3	3			7			_				3	3
04	3	3	-	-	Datto	rn for T		ory (om	no	no	nt		3	3
			Asses			s Assess				-	nei		nd	Semeste	r
Bloom	's Cat	egorv	-	Test		Test 2		Otl		,				ninatio	
	0 000	-89		Itst	-	10302		r	IC			-			-
								to	nle						
Remen	her								/10	-					
Unders				$\frac{\mathbf{v}}{\sqrt{\mathbf{v}}}$		$\frac{1}{\sqrt{2}}$								$\frac{1}{\sqrt{2}}$	
Apply	Juna			$\frac{\mathbf{v}}{\sqrt{\mathbf{v}}}$		$\frac{\mathbf{v}}{}$								$\frac{1}{\sqrt{2}}$	
Analyz	e			$\frac{1}{\sqrt{1-1}}$		$\frac{1}{\sqrt{1-\frac{1}{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{\sqrt{1-\frac{1}{1-\frac{1}{\sqrt{1-\frac{1}}{1-\frac{1}}}}}}}}}}$									
Evalua				•		•								•	
Create															
			Ass	essme	nt Pat	tern fo	r La	b Co	mp	on	ent				
Blo	om's	Catego	1		luatio	Conti	nuo	us A	sse	ssr	ner		ools		·+
Remen	hor			EVd	$\frac{1}{\sqrt{2}}$	1 1		Lvdil	valuation 2					Repor	ι
Unders									√						
onuers	anu				v				v					v	

Computer Science and Engineering (CSE)

Apply					[- 6		<u> </u>
Apply Apply				1	/	V			V	
Analyze Evaluate										
Create										
Greate				М	arl Dict	ribution of CIA				
]	The				col []	D1		Total
Course				ory [L-'	-	Practi	-	-		Mark
Structur e [L-T-P- R]		Assig men	-	Test- 1	Test 2	t- Continuous Assessment	La	ab Exa	m	S
2-1-2-0	5	5	7	7.5	7.5	15		10		50
				Total	Marks d	listribution				
Total M	lark	s	CI	A (Marl		ESE (Marks)		ESI	E Dur	ation
100011		-		50	-,	50			2 hou	
			Er		ester Exa	mination [ESE]				
PATTER	N			ART A	2110	PART E	2		FSF	Marks
IAIIEN	1	2 Ou		s from		2 questions will be given 50				
PATTERN	12		ng 3 m	iestions arks	(from each modu which 1 questio be answered. Each question ca maximum c subdivisions. Each question can marks. (4x8 = 32	n sh in ha of rries	ave a 3 8		
				1	SYLLA					
	M	10DUL	E I: Ba	asics of	Comput	er Hardware and	l Sof	tware		
level langua	Men Sof	nory, In Stware Introc	nput& & Sys luction	tem sof tem sof n to str bble sort	t device tware: C ructured <i>t, linear s</i>	s ompilers, interpro approach to pr earch - algorithms	eters ogra	;, High mminį	level g, Flo	w chart
				MODU	LE II: Pro	ogram Basics				
Types, Cons Operators Logical Ope Bitwise Ope Control Fl o	MODULE II: Program Basics Basic structure of C program: Character set, Tokens, Identifiers in C, Variables and Data Types, Constants, Console IO Operations, printf and scanf Operators and Expressions: Expressions and Arithmetic Operators, Relational and Logical Operators, Conditional operator, size of operator, Assignment operators and Bitwise Operators. Operators Precedence Control Flow Statements: If Statement, Switch Statement, Unconditional Branching using goto statement, While Loop, Do While Loop, For Loop, Break and Continue									
statements.	נטווו	<u> </u>	-		-	gs and Functions	:			
		MOD			, 5, 50 m	b ⁵ and 1 unctions	•			
							1			

Arrays: Arrays Declaration and Initialization ,1-Dimensional Array, 2-Dimensional Array

String processing: In built String handling functions (strlen, strcpy, strcat and strcmp, puts, gets) **Introduction to modular programming**: writing functions, formal parameters, actual parameters Pass by Value, Recursion, Arrays as Function Parameters structure, union, Storage Classes, Scope and lifetime of variables, *simple programs using functions*

MODULE IV: Pointers and Files

Pointers: Declaring pointers, accessing data though pointers, NULL pointer, array access using pointers, pass by reference effect

File Operations: open, close, read, write, append, Sequential access and random access to files: In built file handling functions (*rewind()*,*fseek()*, *ftell()*, *feof()*, *fread()*, *fwrite()*), *simple programs covering pointers and files*.

Textbooks

- 1. Schaum Series, Gottfried B.S., Tata McGraw Hill, Programming with C, 1996
- 2. E. Balagurusamy, Mcgraw Hill, Programming in ANSI C, 8/e, 2019
- 3. Asok N Kamthane, Pearson, Programming in C, 3/e, 2015
- 4. Anita Goel, Pearson, Computer Fundamentals,2010.

Reference books

- 1. Anita Goel and Ajay Mittal, Pearson, Computer fundamentals and Programming in C
- 2. Brian W. Kernighan and Dennis M. Ritchie, Pearson, C Programming Language
- 3. Rajaraman V, PHI, Computer Basics and Programming in C
- 4. Yashavant P, Kanetkar, BPB Publications, Let us C

NPTEL/SWAYAM Courses for reference:

- Introduction to Programming in C -<u>https://archive.nptel.ac.in/courses/106104128</u>
 /
- Problem solving through programming in C -<u>https://archive.nptel.ac.in/courses/106105171</u> <u>/</u>

C Programming and Assembly Language -<u>https://archive.nptel.ac.in/courses/106106210</u> ∠

No.	COURSE CONTENTS AND LECTURE SCHEDULE							
	ED DOAL ON TO DEDICATION	S						
		(36)						
	Module 1: Basics of Computer Hardware and Software (7 Hours)							
1.1	Basics of Computer Architecture: Processor, Memory, Input& Output	2						
	devices							
1.2	Application Software & System software: Compilers, interpreters,	2						
	High level and low-level languages							
1.3	Introduction to structured approach to programming, Flow chart	1						
1.4	Algorithms, Pseudo code (bubble sort, linear search - algorithms	2						
	and pseudo code)							

	R/		II: Program Basics (8 Hrs)	0.						
2.1			gram: Character set, Tokens, Identifiers in							
2.1										
		Jata Type	es, Constants, Console IO Operations,	2						
	printf and scanf									
2.2	Operators and	-	essions: Expressions and Arithmetic							
			Logical Operators, Conditional operator,	2						
			nt operators and Bitwise Operators.							
2.2	OperatorsPreced			4						
2.3			s: If Statement, Switch Statement, using go to statement, While Loop, Do	4						
	_	-	ak and Continue statements. <i>(Simple</i>							
	programs coverin	0								
			s, Strings and Functions (11 Hours)							
3.1			itialization, 1-Dimensional Array, 2-	2						
	Dimensional Arra	ıy								
3.2	String processin	g: In bui	lt String handling functions (<i>strlen,</i>	3						
	strcpy, strcat and	strcmp, p	outs, gets), Simple programs covering arrays							
	and strings									
3.3	ů –	odular n	programming, writing functions, formal	2						
	parameters, actua	-		_						
3.4	C	-		3						
		Pass by Value, Recursion, Arrays as Function Parameters								
3.5		0	Classes, Scope and lifetime of variables,	3						
	simple programs									
			/: Pointers and Files (6 Hrs)							
4.1	Basics of Pointe	r : declari	ng pointers, accessing data though	3						
	pointers, NULL po	ointer,ari	ray access using pointers, pass by							
	reference effect									
4.2	File Operations:	open, clo	ose, read, write, append	4						
4.3	-	-	ndom access to files: In built file handling							
110			(), ftell(), feof(), fread(), fwrite(),	2						
	simple programs	42 2		2						
			LAN FOR LAB COMPONENT							
No.	Topic	No. of		rv)						
	ropic	Hours		- , ,						
		(24)								
4										
1.	Familiarization of	2	1. Familiarization of Hardware Compone	nts of a						
	Hardware		Computer	11						
	Components.	EDUG	2. Familiarization of Linux environment -	- HOW						
	Familiarization of		to do Programming in C with Linux							
	Linux									
	environment									
2.	Familiarization of	2	Familiarization of console I/O and operato	rs in C						
	console I/O and		i) Display "Hello World"							
	operators in C		ii) Read two numbers, add them ar	nd						
			display their sum							
			iii) Read the radius of a circle, calcu	late its						
		<u>_</u>								
		Γ	Sahrdaya College of Engineering and Technology (Aut	tonomous)						
			,							

			Computer Science and Engineering (CSE								
			area and display it								
3.	Basic structure	2	1. Read 3 integer values and find the largest								
	of C program.		among them.								
	Operators and		2. Read a Natural Number and check whether								
	Expressions		the number is prime or not								
4.	Arrays & Strings	4	Read n integers, store them in an array and find								
			their sum and average Read two strings (each one ending with a \$ symbol), store them in arrays and								
			concatenate them without using library functions.								
5.	Structure, Union	3	1. Read two input each representing the distances								
0.		Ū	between two points in the Euclidean space,								
			store								
			these in structure variables and add the two								
			distance values.								
			2. Using structure, read and print data of n								
	<u>C'</u>	2	employees (Name, Employee Id and Salary)								
6.	Simple programs using functions	3	Find the factorial of a given Natural Number n using recursive and non-recursive functions								
7.	Simple programs	4	Do the following using pointers								
/.	using Pointer	1	i) add two numbers								
	U		ii) swap two numbers using a user								
			defined function								
8.	File Operations	4	Create a file and perform the following								
	i no operations	-	i) Write data to the file								
			ii) Read the data in each file & display the								
			file content on console								
			iii) append new data and display on console								
			ssessment Questions								
1			processor and memory in a computer.								
	2. What are		fferences between compiled and interpreted								
	0 0		mple for each.								
			ow chart, explain the bubble sort operation.								
		vith an example									
			d" Program								
2	-		o read a Natural Number through keyboard and								
		to display the reverse of the given number. For example, if "3214567"									
	-	is given as input, the output to be shown is "7654123".									
			e goto statements in a C program? Justify your								
	answer.		ATION IS DEDICATION								
		-	les, explain various operators in C.								
1	4. Read the ra	dius of a	circle, calculate its area and display it								

Computer Science and Engineering (CSE)

3	1. Write a function in C which takes a 2-Dimensional array storing a matrix of numbers and the order of the matrix (number of rows and
	columns) as arguments and displays the sum of the elements stored in each row.
	2. Write a C program to check whether a given matrix is a diagonal
	matrix.3. Without using any builtin string processing function like <i>strlen</i>, <i>strcat</i>
	etc., write a program to concatenate two strings4. Find the factorial of a given Natural Number n using recursive and
4	non-recursive functions
4	 With an example, explain the different modes of opening a file. Differentiate between sequential files and random-access files?
	3. Using the prototypes explain the functionality provided by the followi functions.
	i)(rewind(), ii)fseek() iii)ftell(), iv) fread(), v) fwrite()
	With a suitable example, explain the concept of pass by reference.
	Create a file and perform the following i) Write data to the file ii) Read th in each file & display the file content on console iii) append new data and or
	console
	Preparec

By Ms Minnuja S, Assistant Professor, CSE Department Ms Anly A, Assistant Professor, CSE Department

							L	T	P	R	C	Year o	of		
24CSR	20		Digital System Design										luction		
5								0	0	1	4	2024			
Pream	nble:														
The o	bjecti	ive of t	he cour	se is to	familia	arize le	arners v	vith t	he ba	asic	conce	epts of I	Boolean		
algebr	a and	l digita	al syster	ns. Thi	s cours	e cover	s the de	esign	of sir	nple	e com	binatio	nal and		
seque	ntial	logic	circuits,	repre	sentati	on and	l arithn	netic	algo	rithi	ms fo	or Bina	ry, BCD		
(Binar	у Со	ded D	ecimal)	and H	Floating	g point	numbe	ers w	hich	in	turn	are he	lpful in		
under	stand	ling or	ganizat	ion &	design	of a co	omputer	· syst	em a	ind	unde	rstandi	ng how		
patter	ns of	ones a	and zero	s can b	be used	to stor	e inforr	natio	n on	com	ipute	rs, inclı	ıding		
multir															
Prere															
			es: After												
CO 1	Illus	trate c	lecimal,	binary	, octal,	hexade	ecimal a	nd B(CD nı	ımb	er sy	stems, p	perform		
			is amon												
			n, multij					-					IJ		
CO 2	Simp	olify a	given Bo	oolean	Functio	on and	design a	a com	ibina	tion	al cir	cuit to			
			the sim				0 0								
CO 3		-	nbinatio									-			
		-	ors, Pari	-		Checke	er and d	esign	the	Prog	grami	nable L	ogic		
			ROM and	-		-	1								
CO 4	Desi	gn seq	uential	circuit				s and	Shift	: Reg	gister	s [Appl	y]		
r		r	1	[PPING		T	-		1	1		
CO	P01	P02	P03	P04	P05	P06	P07	PO	P09) P	010	P011	P012		
<u> </u>	3	3		ED	DCATIC	NETS D	EDICA	8					3		
CO 1	3	3	3			3				_			2		
CO 2 CO 3	3	3	2			2							3		
CO 3	3	3	3			3							3		
CU 1	5	5	-	ccmon	t Patto	-	Theory	7 Con	Inon	ont			5		
					Assessr			CON	- -			er			
Bloon	n's	-	Test1	uousi	Test 2		Other		End Semeste Examination						
Categ	or		10001		1000		tools								
У			,			r									
Reme			√		٧	r									
Under		ł	√		٧	/ /									
Apply					V		\checkmark								
Analyz															
Evalua									-						
Create			Δ.		+ D - · ·	f	D								
- וח	om!-	Cata		ssmen	it Patte		Project		_						
RI0	oms	Categ	gory		Continuous Assessment ToolsEvaluation 1Evaluation 2Report										
				E	aluatio	n 1	Eve	huat	ion 7	,		Repo	rt		

Computer Science and Engineering (CSE)

	-						0 0 (
Remember											
Understand											
Apply											
Analyze											
Evaluate											
Create											
Mark Distribution of CIA											
		Theory [L			P	roject	[R]				
Course Structur e [L-T-P- R]	Attendanc e	Assign ment	T es t- 1	T e st -2			R ep or t	Total Marks			
3-0-0-1 5		5	7.5	7.5	10	10	5	50			

		Total Ma	rks distribution								
Total Marks	6 CIA	ESE	ESE Duration								
	(Marks)	(Marks)									
100	50	50	2 hrs.								
End Semester Examination [ESE]: Pattern											
PATTERN	PART	A	PART B	ESE Marks							
PATTERN 2	2 Questions fr module, 8 que each Question marks. Answe Marks: (6x3 =	stions, carries 3 r any 6	PART BESE Ma2 questions will be given from each module, out of which 1 question should be answered. Each question can have a maximum of 2 subdivisions. Each question carries 8 marks. Marks: (4x 8 = 32 marks)								
SYLLABUS											

MODULE I: Number systems, Operations & Codes (7 Hours)

Decimal, Binary, Octal and Hexadecimal Number Systems- Number Base Conversions. Addition, Subtraction, Multiplication and Division of binary numbers. Representation of negative numbers- Complements, Subtraction with complements. Addition and subtraction of BCD, Octal and Hexadecimal numbers. Binary codes- Decimal codes, Error detection codes, Reflected code, Character coding schemes – ASCII, EBCDIC.

MODULE II : Boolean Algebra (9 Hours)

Postulates of Boolean Algebra. Basic theorems and Properties of Boolean Algebra. Boolean Functions - Canonical and Standard forms. Simplification of Boolean Functions-Using Karnaugh- Map Method (upto five variables), Don't care conditions, Product of sums Total Marks CIE Marks ESE Marks ESE Duration 150 50 100 3 simplification, Tabulation Method. Digital Logic Gates- Implementation of Boolean functions using basic and universal gates.

MODULE III : Combinational Logic Circuits(9 Hours)

Design Procedure & Implementation of combinational logic circuits- Binary adders and subtractors, Binary Parallel adder, Carry look ahead adder, BCD adder, Code converter, Magnitude comparator, Decoder, Demultiplexer, Encoder, Multiplexer, Parity generator/ Checker.

MODULE IV : Sequential logic circuits (9 Hours)

Flip-flops- SR, JK, T and D. Triggering of flip-flops- Master slave flip- flops, Edgetriggered flip- flops. Excitation table and characteristic equation. Registers- register with parallel load. Counter design: Asynchronous counters- Binary and BCD counters, timing sequences and state diagrams. Synchronous counters- Binary Up- down counter, BCD counter

Shift registers – Serial In Serial Out, Serial In Parallel Out, Bidirectional Shift Register with Parallel load. Ring counter. Johnson counter- timing sequences and state diagrams. **Arithmetic algorithms**

Algorithms for addition and subtraction of binary numbers in signed magnitude and 2's complement representations. Algorithm for addition and subtraction of BCD numbers. Representation of floating point numbers, Algorithm for addition and subtraction of floating point numbers

Programmable Logic devices

ROM. Programmable Logic Array(PLA)- Implementation of simple circuits using PLA **Textbooks**:

1. M. Morris Mano, Digital Logic & Computer Design, 4/e, Pearson Education, 2013 2.

2. Thomas L Floyd, Digital Fundamentals, 10/e, Pearson Education, 2009.

3. M. Morris Mano, Computer System Architecture, 3/e, Pearson Education, 2007.

Reference books

1. M. Morris Mano, Michael D Ciletti , Digital Design With An Introduction to the Verilog HDL, 5/e, Pearson Education, 2013.

2. Donald D Givone, Digital Principles and Design, Tata McGraw Hill, 2003

NPTEL/SWAYAM Courses for reference:

No.	COURSE CONTENTS AND LECTURE SCHEDULE							
	MODULE 1: Number systems, Operations & Codes (7 Hours)							
1.1	Number Systems: Decimal, Binary, Octal and Hexadecimal number	1						
	systems, Number Base Conversions.							
1.2	Binary Arithmetic: Addition, Subtraction, Multiplication & Division	1						
	of Binary Numbers. (Lecture 1)							
1.3	Addition, Subtraction, Multiplication & Division of Binary	1						
	Numbers. (Lecture 2)							
1.4	Representation of Negative Numbers- Complements, subtraction with complements.	1						

		, ing (002
1.5	BCD Arithmetic: Addition and Subtraction of BCD Numbers	1
1.6	Octal and Hexadecimal Arithmetic: Addition & Subtraction of Octal	1
	and Hexadecimal Numbers.	
1.7	Binary Codes: Decimal Codes, Error detection codes, Reflected	1
	code, Character Coding Schemes-ASCII, EBCDIC	
	MODULE II:Boolean Algebra (9 Hours)	
2.1	Introduction to Boolean Algebra: Postulates of Boolean Algebra	1
2.2	Basic theorems and Properties of Boolean Algebra	1
2.3	Boolean Functions: Canonical and Standard Forms	1
2.4	Simplification of Boolean Functions: Karnaugh -Map Method (upto	1
	five variables), Don't care conditions (Lecture 1)	
2.5	Simplification of Boolean Functions: Karnaugh -Map Method (upto	1
	five variables), Don't care conditions (Lecture 2)	
2.6	Product of sums simplification	1
2.7	Tabulation method	1
2.8	Digital Logic Gates: AND, OR, NOT, NAND, NOR, XOR, XNOR,	1
	Implementation of Boolean functions using basic and universal	
	gates. (Lecture 1)	
2.9	Digital Logic Gates: AND, OR, NOT, NAND, NOR, XOR, XNOR,	1
	Implementation of Boolean functions using basic and universal	
	gates. (Lecture 2)	
	MODULE III : Combinational Logic Circuits (9 Hours)	
3.1	Design Procedure & Implementation of Combinational Circuits	1
3.2	Binary Adders: Implementation of Half Adder, Full Adder	1
3.3	Binary Subtractors: Implementation of Half Subtractor, Full	1
5.5	Subtractor	1
3.4	Implementation of Binary Parallel Adder ,Carry look ahead Adder,	1
5.4	BCD Adder (Lecture 1)	1
3.5	Implementation of Binary Parallel Adder ,Carry look ahead Adder,	1
0.0	BCD Adder (Lecture 2)	
3.6	Implementation of Various Combinational Circuits: Code	1
5.0	Converters, Magnitude Comparator	1
3.7	Implementation of Decoder, Demultiplexer	1
3.8	Implementation of Encoder, Multiplexer	1
	Implementation of Parity Generator/Checker	1
3.9		
3.9		1
3.9	MODULE IV:Sequential logic circuits: (9 Hours)	1
3.9 4.1	MODULE IV:Sequential logic circuits: (9 Hours) Flip flops: SR, JK, T and D flip- flops (Lecture 1)	2
	MODULE IV:Sequential logic circuits: (9 Hours)	1
4.1	MODULE IV:Sequential logic circuits: (9 Hours) Flip flops: SR, JK, T and D flip- flops (Lecture 1)	
4.1 4.2	MODULE IV:Sequential logic circuits: (9 Hours) Flip flops: SR, JK, T and D flip- flops (Lecture 1) SR, JK, T and D flip- flops (Lecture 2)	1

	flops (Lecture 2)							
4.5	Excitation table and characteristic equations of flip- flops							
4.6 Registers- Register with parallel load								
4.7 Counter Design: Asynchronous counters- Binary and BCD								
	counters- timing sequences and state diagrams. (Lecture 1)							
4.8	Asynchronous counters- Binary and BCD counters- timing							
	sequences and state diagrams. (Lecture 2)							
4.9	Synchronous counters- Binary Up- down counter, BCD count	ter						
	LESSON PLAN FOR PROJECT COMPONENT							
	Торіс	No. of Hour s (12)						
of differ	will be divided in to batches (3-4) and do projects on Design ent logic gates ,half adder, full adder, counters and shift in a span of 2 phases							
Phase 1 project.	: First review will be conducted to assess the design of each	5						
	Final review of the project with a demonstration of the design and execution.	7						
	CO Assessment Questions							
COAssessment QuestionsCO11. Perform the following conversion a) Decimal to Binary (57.375)10 b) Binary to Hexadecimal (1001111011110011100)2 c) Octal to decimal (2374.325)82. Subtract 24.75 from 16.5 using 2's complement3. Perform the following operations a) Perform the bcd addition of the given number 596 and 386 b) Perform the bcd subtraction of the given number using 9's complement 679.6-885.9								
	 2. Subtract 24.75 from 16.5 using 2's complement 3. Perform the following operations a) Perform the bcd addition of the given number 590 b) Perform the bcd subtraction of the given number 9's complement 	6 and 386						

	1. Simplify the following expressions using K-Map i)
	F(X,Y,Z)=XYZ+XY'Z+XYZ'+X'Y'Z ii)
CO2	$F(A,B,C,D) = \sum (2,5,6,9,12,13)$
C02	2. Express the following function as sum of minterms
	i) F(XYZ)=X'+YZ+XZ'+XY'Z'+XYZ'
	ii) $F(ABC)=B'+AC'+AB'C$
	3. Simplify the Boolean expression $Y(A,B,C,D)=\prod M(0, 1, 3, 5, 6, 7, 10)$
	14, 15) using K-map in Product of Sums form.
	4. Simplify the boolean function using tabulation method F(W,X,Y,Z)=
	$\sum(0,5,7,8,9,10,11,14,15)$
	1. Implement a full adder circuit using 3*8 decoder
CO3	2. Draw and explain the logic circuit of 4 bit full adder with look
000	ahead carry.
	3. Implement the following boolean functions using PLA
	$F1 = \sum (0, 1, 3, 4)$
	$F2=\sum(1,2,3,4,5)$
	4. Design a code converter for converting BCD TO Excess 3 code
	1. Implement JK flip flop Using D filp flop
	2. Design a Synchronous counter with th efollowing repeated
	binary sequence 000,110,111,010,011 using T flip flop
CO4	3. Draw the block diagram of 4 bit ripple counter.
	 Explain how shift register is used as a converter from i) serial to parallel data ii) parallel to serial data
	to parallel data 111 parallel to serial data

		BAS	IC ELE	CTRIC	CAL AN	D			L	Т	Р	R	C	Year of	
24ES	L006	ELE	CTRON	IICS E	NGINE	ERING	RING				1	N		(ntrodu	ction
WORKSHOP						0 0 2 0 1 2024									
Prea	amble	e: Elec	intende	ed to im	ipa	rt sł	cills	to j	plar	n and	carry ou	ıt			
				-			-		cing	eng	gine	ers	to id	entify th	e basic
prac	tices	and sa	afety m	easur	es in el	ectrical	wiring	3 .							
Pre	r <mark>equ</mark> i	site: N	NIL												
Cou	rse O	utcon	nes: Af	ter the	e comp	letion c	of cours	se tl	he s	tud	ent	wil	l be a	ble to	
C01	Ide	ntify	the too	ls and	equipr	nent us	sed for	ele	ctric	cal v	viri	nga	and u	indersta	nd
						Jnders	-								
CO2	De	sign a	nd dev	elop li	ghting	and po	wer cir	cui	its a	nd o	dist	ribu	ution	board	
		arrangement under various conditions for domestic buildings.[Apply]													
CO3		Identify various electronic components [Understand] Design simple electronic circuits on breadboard and PCB. .[Apply]													
CO 4	De	sign s	imple e	electro						and	PCI	3. .[Appl	y]	
	T						MAPP	INC	G	1				1	1
CO		P02	P03	P04	P05	P06	P07	P	08)9	P	010	P011	P012
CO1	2					2					2				3
CO2	3	3	3	2		2				-	2				3
CO3	3					2									3
CO4	3		3	1	3	2	1				2				3
					As	_	ent Pa								
Bloc	om's C	atego	ry				tinuou		sses	sme	-				
							swork				Т	'est	:1		
	lembe				EDUC	MICINE	IS DED	100	110	125				r	
	erstar	nd				_	√					/			
App							√					\checkmark			
Ana	-														
	uate					_	1	/							
Crea	ite						1	/							
					Marl	k Distr	ibutio	n of	f CI/	ł					
Cou	rse St	ructu	ire /	Atten	dance	Class	work		Lal	b Ex	am	1	Tota	l Marks	
[L-T	'-P-R]														
	0-0-	2-0		[5		25			20)			50	
			I		Tota	l Mark	distri	bu	tion	1					
1	[otal]	Mark	s	CIA	(Marl	ks)	ES	E (I	Mar	ks)			ES	E Durat	ion
	5	0			50		0 -								
			I	SYLL	ABUS-	DETAI	LS OF I	EXI	PER	IMI	ENT	S			

SECTION – 1 (Electrical Engineering Experiments) Minimum 5 experiments are mandatory

Familiarize with tools and equipment required for wiring; Understand the electrical safety precautions; Identify different types of cables, wires, switches, fuses, fuse carriers, MCB, ELCB and MCCB, familiarize the ratings; Demonstrate the Pipe and Plate Earthing Schemes using Charts/Site Visit

Wiring of light circuits (light/ fan point and a 6A plug socket with individual control, Staircase wiring, fluorescent lamp) and power circuit (16 A Power plug socket with a control switch)

Wiring of power distribution arrangement using single phase MCB distribution board with ELCB, main switch and Energy meter.

Familiarization of Rheostat, Step-down Transformers, Measurement and representation of voltage and waveform to scale in graph sheet with the help of CRO; measurement of potential across resistance elements and introducing the concept of relative potential using a DC circuit; Identify battery specifications using different types of batteries

SECTION – 2 (Electronics Engineering Experiments)

Minimum 5 experiments are mandatory

Familiarization/Identification of electronic components with specification, Drawing of electronic circuit diagrams using BIS/IEEE symbols, Familiarization/Application of testing instruments and commonly used tools, Testing of electronic components using multimeter .

Printed circuit boards (PCB) - Types, Single sided, Double sided, PTH, Processing methods. Design and fabrication of a single sided PCB for a simple circuit. Interconnection methods and soldering practice. Assembling of electronic circuit/system on general purpose PCB, test and show the functioning.

Text books

- 1. V N Mittal and Rohit Gupta, "Basic Electrical Engineering"
- 2. National Electric Code (NEC) by National Fire Protection Association
- 3. E A Reeves, "Electric Wiring Practices"
- 4. Basic Electronics: Principles and Applications, Chinmoy Saha, Arindham Halder and Debarati Ganguly
- 5. Basic Electronics and Linear Circuits, N N Bhargava D C Kulshreshtha and S. C. Gupta

Reference books

- 1. "Wiring Practices Manual" by International Brotherhood of Electrical Workers
- 2. "Electrical Wiring: A Practical Guide" by J F McPartland

LIST OF EXPERIMENTS

Electrical - 12 Hrs

(Minimum 6 experiments are mandatory)

No Experiments

6	Inter-connection methods and soldering practice.							
	Bread board, Wrapping, Crimping, Soldering - types - selection of materials and							
	safety precautions.							
	Soldering practice in connectors and general purpose PCB, Crimping.							
7	Assembling of electronic circuit/system on general purpose PCB, test and show							
	the functioning (Any two)-							
	 Fixed voltage power supply with transformer 							
	Rectifier using diode							
	Capacitor filter							
	Zener/IC regulator							
	 Square wave generation using IC 555 timer in IC base. 							
8	Introduction to EDA tools.							
	CO Assessment Questions							
C01	CO1 Identify the tools given with you and demonstrate its proper use							
C01	Demonstrate the electrical safety precautions as a team							
CO2	Design and develop the wiring as per the given layout and obtain the output							
CO3	A team work to fabricate the component as per the given design using available							
	manufacturing methods and submit the report							
CO3	Identify the electronic components in the given figure and assemble the							
	component on a circuit board to enable the required function							
C04								
	Prepared							

Prepared

by, Ms. Drisya K Sasi, Assistant Professor, Department of EEE Mr. Sebin Davis K, Assistant Professor, Department of EEE Ms. Anju Babu, Assistant Professor, Department of ECE Ms. Reshma P S, Assistant Professor, Department of ECE

24HI	J T007	COM	MINI	TATIVE	FNCLIS	н		Т	Р	R	.	Year of ntrodu	ction
2	UT007 COMMUNICATIV				LINGLIS)	0 2 0		1			
Prean	nble: T	his cou	irse air	ns to er	hance t	he cor	nmu	inic	ative E	nglish	skills	of engir	eering
					e four n					-		_	-
					e in vari		-	_			-	_	-
langua	age lab,	to imp	rove t	heir pro	ficiency	' in En	glisł	1.					
Prere	quisite	: NIL					_						
Cours	e Outc	omes:	After t	he com	pletion	of the	coui	rse,	the stu	ıdent v	vill be		
able to)												
CO 1	Improv	ve Liste	ening S	kills in	English	[Appl	y]						
CO 2	Enhand	ce Stud	ents' F	Reading	Skills in	n Engli	sh [Ana	lyze]				
CO 3	Develo	p Writ	ing Ski	lls in Er	nglish [C	reate							
CO 4	Improv	ve Spea	ıking S	kills in I	English	[Evalı	iate]						
					CO - P	O MA	PPIN	١G					
CO	P01	P02	P03	PO4	P05	P06	PO)7	P08	P09	P010	P011	P012
CO 1	1									2	3		
CO 2	1	2									3		
CO 3	1		2	3						2	3		
CO 4	1					1				3	3		
			Ass	sessme	nt Patte	ern fo	r La	b Co	ompor	nent			
	Bloc	om's Ca	ategor	' ¥7		(Cont	inu	ious As	ssessn	nent T	ools	
	DIO	/III 5 Cd	itegoi	y		Cla	assu	vorl	k			Test	
Remei	mber					1		-					
Under	stand				y								
Apply					\checkmark								
Analyze				nena nen									
Evaluate													
Create													
				Ма	ark Dist	tribut	ion	of C	CIA				
Attor					Lab []	P]							
Atten danc				Writin									
e			•	-	T				Total Marks				
	Test Reading Test				LIST	Listening Test Speaking T							
		U								9			
5	25 25			20			25			100			
<u> </u>	1			То	tal Mar	ks dis	strik	outi	on		I		
Total Marks		CIA (Marks)		ESE (Marks		s)	ESE Duration						
1	00	· · ·		0	-								
				I	-	LLAB	US						
<u>. </u>													

MODULE I: Introduction and Listening Skills (4 hours)

Introduction To the Theory of Communication: Types of Communication, Modes of Communication

Listening Skills: Listening: Importance and Benefits of Listening Skill, Different Types of Listening, understanding different accents and dialects, Note-taking strategies, Strategies

for Improving Listening

MODULE II: Reading Skills (4 hours)

Reading: A Passive Skill – Its Importance, Ten Important Reading Strategies and their Benefits, Skimming and scanning techniques, identifying main ideas and supporting details

MODULE III: Writing Skills (4 hours)

Different Styles of Writing, Fundamentals of English Usages, understanding different types of charts, graphs, and diagrams, describing trends and comparing data Structuring an essay, developing arguments and supporting them with examples, Making Notes and Resumes, Report Writing, Fundamentals of Intonation, Correspondence Writing, Means to Enhance Vocabulary, Content Writing

MODULE IV: Speaking Skills and Integrated Review (8 hours)

Speaking Skills: The Importance of Speaking as an active skill; Grammar, Vocabulary, and Phonetics: Tools of Communicative English Developing fluency and coherence; Pronunciation and stress; Techniques for Effective Public Speaking; Group Discussion and Interview Skills; Presentation Skills; People Skills.

Integrated Skills and Review: Business English, Comprehension, Summary and

Paraphrasing, Research Methodology and Documentation

Textbooks

- 1. Effective Communication Skills/Kul Bhushun Kumar, P S Salaria, Khanna Book Publishing Co (P) Ltd, New Delhi
- 2. Communication Skills For Engineers & Scientists/ Sangeeta Sharma, Binod Mishra, PHI Learning Pvt Ltd, New Delhi
- 3. Humanities & Communication Skills/Pearson Education India Pvt Ltd, New Delhi
- 4. Adler B. Ronald and Russell F. Proctor II. Looking Out, Looking In. Cengage Learning.2017.
- 5. Dianna L.Vanblerkom. College Study Skills.Wadsworth.2003
- 6. Aggarwal, R. (2003). Effective Communication Skills. Jaipur: Sublime Publications
- 7. Davies, F. 1995, Introducing Reading. Penguin Books.
- 8. Downs, Lisa. Listening Skills Training. USA; ASTD, 2008. Print.

computer science and Engineering	(
Reference books					
1. Dawes, L. The Essential Speaking and Listening. Routledge, 2008.					
2. Cornbleet, S., and Carter, R. The Language of Speech and Writing. Routledge, 2001.					
3. Harvey, I. (1951). The Technique of Persuasion. London: The Falcon Press.					
4. Anderson, A. and Lynch, T. (1988) Listening, Oxford: Oxford University, Press.					
5. Riggenbach, Heidi. Perspectives on Fluency.University of Michigan Press, 2000.					
6. Dianna L.Vanblerkom. College Study Skills.Wadsworth.2003					
7. Crystal, D. (2003). English as a Global Language. 2nd edition. Cambridge:					
Cambridge University Press					
8. Anderson, Marilyn, Pramod K. Nayar. Critical Thinking, Academic Writing					
and Presentation Skills. Dorling Kindersley. India 20109. David Crystal Mother-tongue India Talk for Lingua Franca (ABC, Australia),					
January 2005 http://www.globalenglish.com/blog/2014/06/10/indian-employers-					
report-					
business-english-is-essential-totheir-workforce/ by 12/3/14 at 6:15 pm					
10. Crystal, David (2003). The Cambridge Encyclopedia of the English Language (2n	ıd				
Ed.). Cambridge University Press. ISBN 0-521-53033-4.					
NPTEL/SWAYAM Courses for reference:					
1. https://onlinecourses.swayam2.ac.in/cec24 lg08/preview:: Communicative					
English By Dr. Salia Rex					
LESSON PLAN FOR LAB COMPONENT					
No	o. of				
No. Topic Ho	ours				
	24)				
1 Listening practice using audio resources	4				
2 Reading comprehension exercises and quizzes	4				
3 Writing practice and peer review	4				
4 Essay writing/Resume writing/Report writing and feedback sessions	4				
5 Speaking practice with peers and recording for self-assessment	8				
CO Assessment Questions					

	Computer Science and Engineering (CSE
	Listening Test: You will have to listen to four recordings (conversations and monologues) and then answer the questions asked. The recordings are of native English speakers, and various accents are used. Remember, you can hear each recording only once. • Recording 1: You will listen to a dialogue in daily life and context.
	• Recording 2: You will listen to a monologue about everyday life or social context. For instance, a talk on the condition of streets in an area.
C01	• Recording 3: You will listen to a conversation between more than two people placed in a training or educational context. For instance, a teacher discusses an assignment with students.
	• Recording 4: You will listen to a monologue on any academic subject, such as a college lecture.
	 Answer 6 question types, including: Multiple choice Matching Plan/map/diagram labelling Note completion Short answer questions
	The Reading test is divided into three parts, each featuring a comprehensive passage from contemporary books, journals, magazines, and newspapers. These passages reflect topics relevant to academic and professional environments in English-speaking contexts. Answer 11 question types, including:
CO 2	 Multiple choice Identifying information Note completion Matching headings Matching sentence endings
	 Summary completion Sentence completion Flow-chart completion
CO 3	Part 1: You are presented with a graph, table, chart, or diagram and asked to describe, summarize, or explain the information in your own words. You may be asked to describe and explain data, describe the stages of a process, explain how something works, or describe an object or event. Part 2: You are asked to write an essay responding to a point of view, argument or problem.

Part 1: (4–5 minutes) Introduction and interview. The examiner will ask you to introduce yourself and confirm your identity. Then, the examiner will ask you generic questions about family, studies, work, and interests.

Part 2: (3–4 minutes) Individual long turn. The examiner will give you a task card with a topic written on it, with some points you may cover in your speech. You will have one minute to think and prepare the topic; a paper and pencil will be provided

CO 4 to jot down your notes. Once done ideating, you will have a time of one to two minutes to speak on the subject, followed by some questions on the same by the examiner.

Part 3: (4–5 minutes) Two-way discussion. The examiner will ask more questions related to the topic provided in Part 2 of the Speaking test. You can use this opportunity to talk about more ideas.